include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,36,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,36,6}*1728c
if this polytope has a name.
Group : SmallGroup(1728,30228)
Rank : 4
Schlafli Type : {4,36,6}
Number of vertices, edges, etc : 4, 72, 108, 6
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,18,6}*864c
3-fold quotients : {4,36,2}*576b, {4,12,6}*576d
6-fold quotients : {4,18,2}*288b, {4,6,6}*288d
9-fold quotients : {4,12,2}*192b
12-fold quotients : {4,9,2}*144
18-fold quotients : {4,6,2}*96c
36-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)
(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)
(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)
(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192)
(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)(206,208)
(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)(222,224)
(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)(238,240)
(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)(254,256)
(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)(270,272)
(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)(286,288)
(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)(302,304)
(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)(318,320)
(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)(334,336)
(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)(350,352)
(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)(366,368)
(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)(382,384)
(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)(398,400)
(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)(414,416)
(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)(430,432);;
s1 := ( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 15, 16)( 17, 21)( 18, 22)
( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)( 37, 81)
( 38, 82)( 39, 84)( 40, 83)( 41, 77)( 42, 78)( 43, 80)( 44, 79)( 45, 73)
( 46, 74)( 47, 76)( 48, 75)( 49, 93)( 50, 94)( 51, 96)( 52, 95)( 53, 89)
( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)( 60, 87)( 61,105)
( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)( 67,104)( 68,103)( 69, 97)
( 70, 98)( 71,100)( 72, 99)(111,112)(113,117)(114,118)(115,120)(116,119)
(123,124)(125,129)(126,130)(127,132)(128,131)(135,136)(137,141)(138,142)
(139,144)(140,143)(145,189)(146,190)(147,192)(148,191)(149,185)(150,186)
(151,188)(152,187)(153,181)(154,182)(155,184)(156,183)(157,201)(158,202)
(159,204)(160,203)(161,197)(162,198)(163,200)(164,199)(165,193)(166,194)
(167,196)(168,195)(169,213)(170,214)(171,216)(172,215)(173,209)(174,210)
(175,212)(176,211)(177,205)(178,206)(179,208)(180,207)(217,325)(218,326)
(219,328)(220,327)(221,333)(222,334)(223,336)(224,335)(225,329)(226,330)
(227,332)(228,331)(229,337)(230,338)(231,340)(232,339)(233,345)(234,346)
(235,348)(236,347)(237,341)(238,342)(239,344)(240,343)(241,349)(242,350)
(243,352)(244,351)(245,357)(246,358)(247,360)(248,359)(249,353)(250,354)
(251,356)(252,355)(253,405)(254,406)(255,408)(256,407)(257,401)(258,402)
(259,404)(260,403)(261,397)(262,398)(263,400)(264,399)(265,417)(266,418)
(267,420)(268,419)(269,413)(270,414)(271,416)(272,415)(273,409)(274,410)
(275,412)(276,411)(277,429)(278,430)(279,432)(280,431)(281,425)(282,426)
(283,428)(284,427)(285,421)(286,422)(287,424)(288,423)(289,369)(290,370)
(291,372)(292,371)(293,365)(294,366)(295,368)(296,367)(297,361)(298,362)
(299,364)(300,363)(301,381)(302,382)(303,384)(304,383)(305,377)(306,378)
(307,380)(308,379)(309,373)(310,374)(311,376)(312,375)(313,393)(314,394)
(315,396)(316,395)(317,389)(318,390)(319,392)(320,391)(321,385)(322,386)
(323,388)(324,387);;
s2 := ( 1,253)( 2,256)( 3,255)( 4,254)( 5,261)( 6,264)( 7,263)( 8,262)
( 9,257)( 10,260)( 11,259)( 12,258)( 13,277)( 14,280)( 15,279)( 16,278)
( 17,285)( 18,288)( 19,287)( 20,286)( 21,281)( 22,284)( 23,283)( 24,282)
( 25,265)( 26,268)( 27,267)( 28,266)( 29,273)( 30,276)( 31,275)( 32,274)
( 33,269)( 34,272)( 35,271)( 36,270)( 37,217)( 38,220)( 39,219)( 40,218)
( 41,225)( 42,228)( 43,227)( 44,226)( 45,221)( 46,224)( 47,223)( 48,222)
( 49,241)( 50,244)( 51,243)( 52,242)( 53,249)( 54,252)( 55,251)( 56,250)
( 57,245)( 58,248)( 59,247)( 60,246)( 61,229)( 62,232)( 63,231)( 64,230)
( 65,237)( 66,240)( 67,239)( 68,238)( 69,233)( 70,236)( 71,235)( 72,234)
( 73,297)( 74,300)( 75,299)( 76,298)( 77,293)( 78,296)( 79,295)( 80,294)
( 81,289)( 82,292)( 83,291)( 84,290)( 85,321)( 86,324)( 87,323)( 88,322)
( 89,317)( 90,320)( 91,319)( 92,318)( 93,313)( 94,316)( 95,315)( 96,314)
( 97,309)( 98,312)( 99,311)(100,310)(101,305)(102,308)(103,307)(104,306)
(105,301)(106,304)(107,303)(108,302)(109,361)(110,364)(111,363)(112,362)
(113,369)(114,372)(115,371)(116,370)(117,365)(118,368)(119,367)(120,366)
(121,385)(122,388)(123,387)(124,386)(125,393)(126,396)(127,395)(128,394)
(129,389)(130,392)(131,391)(132,390)(133,373)(134,376)(135,375)(136,374)
(137,381)(138,384)(139,383)(140,382)(141,377)(142,380)(143,379)(144,378)
(145,325)(146,328)(147,327)(148,326)(149,333)(150,336)(151,335)(152,334)
(153,329)(154,332)(155,331)(156,330)(157,349)(158,352)(159,351)(160,350)
(161,357)(162,360)(163,359)(164,358)(165,353)(166,356)(167,355)(168,354)
(169,337)(170,340)(171,339)(172,338)(173,345)(174,348)(175,347)(176,346)
(177,341)(178,344)(179,343)(180,342)(181,405)(182,408)(183,407)(184,406)
(185,401)(186,404)(187,403)(188,402)(189,397)(190,400)(191,399)(192,398)
(193,429)(194,432)(195,431)(196,430)(197,425)(198,428)(199,427)(200,426)
(201,421)(202,424)(203,423)(204,422)(205,417)(206,420)(207,419)(208,418)
(209,413)(210,416)(211,415)(212,414)(213,409)(214,412)(215,411)(216,410);;
s3 := ( 1, 13)( 2, 14)( 3, 15)( 4, 16)( 5, 17)( 6, 18)( 7, 19)( 8, 20)
( 9, 21)( 10, 22)( 11, 23)( 12, 24)( 37, 49)( 38, 50)( 39, 51)( 40, 52)
( 41, 53)( 42, 54)( 43, 55)( 44, 56)( 45, 57)( 46, 58)( 47, 59)( 48, 60)
( 73, 85)( 74, 86)( 75, 87)( 76, 88)( 77, 89)( 78, 90)( 79, 91)( 80, 92)
( 81, 93)( 82, 94)( 83, 95)( 84, 96)(109,121)(110,122)(111,123)(112,124)
(113,125)(114,126)(115,127)(116,128)(117,129)(118,130)(119,131)(120,132)
(145,157)(146,158)(147,159)(148,160)(149,161)(150,162)(151,163)(152,164)
(153,165)(154,166)(155,167)(156,168)(181,193)(182,194)(183,195)(184,196)
(185,197)(186,198)(187,199)(188,200)(189,201)(190,202)(191,203)(192,204)
(217,229)(218,230)(219,231)(220,232)(221,233)(222,234)(223,235)(224,236)
(225,237)(226,238)(227,239)(228,240)(253,265)(254,266)(255,267)(256,268)
(257,269)(258,270)(259,271)(260,272)(261,273)(262,274)(263,275)(264,276)
(289,301)(290,302)(291,303)(292,304)(293,305)(294,306)(295,307)(296,308)
(297,309)(298,310)(299,311)(300,312)(325,337)(326,338)(327,339)(328,340)
(329,341)(330,342)(331,343)(332,344)(333,345)(334,346)(335,347)(336,348)
(361,373)(362,374)(363,375)(364,376)(365,377)(366,378)(367,379)(368,380)
(369,381)(370,382)(371,383)(372,384)(397,409)(398,410)(399,411)(400,412)
(401,413)(402,414)(403,415)(404,416)(405,417)(406,418)(407,419)(408,420);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(432)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)
(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)
(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)
(190,192)(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)
(206,208)(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)
(222,224)(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)
(238,240)(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)
(254,256)(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)
(270,272)(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)
(286,288)(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)
(302,304)(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)
(318,320)(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)
(334,336)(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)
(350,352)(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)
(366,368)(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)
(382,384)(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)
(398,400)(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)
(414,416)(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)
(430,432);
s1 := Sym(432)!( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 15, 16)( 17, 21)
( 18, 22)( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)
( 37, 81)( 38, 82)( 39, 84)( 40, 83)( 41, 77)( 42, 78)( 43, 80)( 44, 79)
( 45, 73)( 46, 74)( 47, 76)( 48, 75)( 49, 93)( 50, 94)( 51, 96)( 52, 95)
( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)( 60, 87)
( 61,105)( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)( 67,104)( 68,103)
( 69, 97)( 70, 98)( 71,100)( 72, 99)(111,112)(113,117)(114,118)(115,120)
(116,119)(123,124)(125,129)(126,130)(127,132)(128,131)(135,136)(137,141)
(138,142)(139,144)(140,143)(145,189)(146,190)(147,192)(148,191)(149,185)
(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)(156,183)(157,201)
(158,202)(159,204)(160,203)(161,197)(162,198)(163,200)(164,199)(165,193)
(166,194)(167,196)(168,195)(169,213)(170,214)(171,216)(172,215)(173,209)
(174,210)(175,212)(176,211)(177,205)(178,206)(179,208)(180,207)(217,325)
(218,326)(219,328)(220,327)(221,333)(222,334)(223,336)(224,335)(225,329)
(226,330)(227,332)(228,331)(229,337)(230,338)(231,340)(232,339)(233,345)
(234,346)(235,348)(236,347)(237,341)(238,342)(239,344)(240,343)(241,349)
(242,350)(243,352)(244,351)(245,357)(246,358)(247,360)(248,359)(249,353)
(250,354)(251,356)(252,355)(253,405)(254,406)(255,408)(256,407)(257,401)
(258,402)(259,404)(260,403)(261,397)(262,398)(263,400)(264,399)(265,417)
(266,418)(267,420)(268,419)(269,413)(270,414)(271,416)(272,415)(273,409)
(274,410)(275,412)(276,411)(277,429)(278,430)(279,432)(280,431)(281,425)
(282,426)(283,428)(284,427)(285,421)(286,422)(287,424)(288,423)(289,369)
(290,370)(291,372)(292,371)(293,365)(294,366)(295,368)(296,367)(297,361)
(298,362)(299,364)(300,363)(301,381)(302,382)(303,384)(304,383)(305,377)
(306,378)(307,380)(308,379)(309,373)(310,374)(311,376)(312,375)(313,393)
(314,394)(315,396)(316,395)(317,389)(318,390)(319,392)(320,391)(321,385)
(322,386)(323,388)(324,387);
s2 := Sym(432)!( 1,253)( 2,256)( 3,255)( 4,254)( 5,261)( 6,264)( 7,263)
( 8,262)( 9,257)( 10,260)( 11,259)( 12,258)( 13,277)( 14,280)( 15,279)
( 16,278)( 17,285)( 18,288)( 19,287)( 20,286)( 21,281)( 22,284)( 23,283)
( 24,282)( 25,265)( 26,268)( 27,267)( 28,266)( 29,273)( 30,276)( 31,275)
( 32,274)( 33,269)( 34,272)( 35,271)( 36,270)( 37,217)( 38,220)( 39,219)
( 40,218)( 41,225)( 42,228)( 43,227)( 44,226)( 45,221)( 46,224)( 47,223)
( 48,222)( 49,241)( 50,244)( 51,243)( 52,242)( 53,249)( 54,252)( 55,251)
( 56,250)( 57,245)( 58,248)( 59,247)( 60,246)( 61,229)( 62,232)( 63,231)
( 64,230)( 65,237)( 66,240)( 67,239)( 68,238)( 69,233)( 70,236)( 71,235)
( 72,234)( 73,297)( 74,300)( 75,299)( 76,298)( 77,293)( 78,296)( 79,295)
( 80,294)( 81,289)( 82,292)( 83,291)( 84,290)( 85,321)( 86,324)( 87,323)
( 88,322)( 89,317)( 90,320)( 91,319)( 92,318)( 93,313)( 94,316)( 95,315)
( 96,314)( 97,309)( 98,312)( 99,311)(100,310)(101,305)(102,308)(103,307)
(104,306)(105,301)(106,304)(107,303)(108,302)(109,361)(110,364)(111,363)
(112,362)(113,369)(114,372)(115,371)(116,370)(117,365)(118,368)(119,367)
(120,366)(121,385)(122,388)(123,387)(124,386)(125,393)(126,396)(127,395)
(128,394)(129,389)(130,392)(131,391)(132,390)(133,373)(134,376)(135,375)
(136,374)(137,381)(138,384)(139,383)(140,382)(141,377)(142,380)(143,379)
(144,378)(145,325)(146,328)(147,327)(148,326)(149,333)(150,336)(151,335)
(152,334)(153,329)(154,332)(155,331)(156,330)(157,349)(158,352)(159,351)
(160,350)(161,357)(162,360)(163,359)(164,358)(165,353)(166,356)(167,355)
(168,354)(169,337)(170,340)(171,339)(172,338)(173,345)(174,348)(175,347)
(176,346)(177,341)(178,344)(179,343)(180,342)(181,405)(182,408)(183,407)
(184,406)(185,401)(186,404)(187,403)(188,402)(189,397)(190,400)(191,399)
(192,398)(193,429)(194,432)(195,431)(196,430)(197,425)(198,428)(199,427)
(200,426)(201,421)(202,424)(203,423)(204,422)(205,417)(206,420)(207,419)
(208,418)(209,413)(210,416)(211,415)(212,414)(213,409)(214,412)(215,411)
(216,410);
s3 := Sym(432)!( 1, 13)( 2, 14)( 3, 15)( 4, 16)( 5, 17)( 6, 18)( 7, 19)
( 8, 20)( 9, 21)( 10, 22)( 11, 23)( 12, 24)( 37, 49)( 38, 50)( 39, 51)
( 40, 52)( 41, 53)( 42, 54)( 43, 55)( 44, 56)( 45, 57)( 46, 58)( 47, 59)
( 48, 60)( 73, 85)( 74, 86)( 75, 87)( 76, 88)( 77, 89)( 78, 90)( 79, 91)
( 80, 92)( 81, 93)( 82, 94)( 83, 95)( 84, 96)(109,121)(110,122)(111,123)
(112,124)(113,125)(114,126)(115,127)(116,128)(117,129)(118,130)(119,131)
(120,132)(145,157)(146,158)(147,159)(148,160)(149,161)(150,162)(151,163)
(152,164)(153,165)(154,166)(155,167)(156,168)(181,193)(182,194)(183,195)
(184,196)(185,197)(186,198)(187,199)(188,200)(189,201)(190,202)(191,203)
(192,204)(217,229)(218,230)(219,231)(220,232)(221,233)(222,234)(223,235)
(224,236)(225,237)(226,238)(227,239)(228,240)(253,265)(254,266)(255,267)
(256,268)(257,269)(258,270)(259,271)(260,272)(261,273)(262,274)(263,275)
(264,276)(289,301)(290,302)(291,303)(292,304)(293,305)(294,306)(295,307)
(296,308)(297,309)(298,310)(299,311)(300,312)(325,337)(326,338)(327,339)
(328,340)(329,341)(330,342)(331,343)(332,344)(333,345)(334,346)(335,347)
(336,348)(361,373)(362,374)(363,375)(364,376)(365,377)(366,378)(367,379)
(368,380)(369,381)(370,382)(371,383)(372,384)(397,409)(398,410)(399,411)
(400,412)(401,413)(402,414)(403,415)(404,416)(405,417)(406,418)(407,419)
(408,420);
poly := sub<Sym(432)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope