include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,36}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,36}*288b
if this polytope has a name.
Group : SmallGroup(288,334)
Rank : 3
Schlafli Type : {4,36}
Number of vertices, edges, etc : 4, 72, 36
Order of s0s1s2 : 36
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,36,2} of size 576
{4,36,4} of size 1152
{4,36,4} of size 1152
{4,36,4} of size 1152
{4,36,6} of size 1728
{4,36,6} of size 1728
{4,36,6} of size 1728
Vertex Figure Of :
{2,4,36} of size 576
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,18}*144b
3-fold quotients : {4,12}*96b
4-fold quotients : {4,9}*72
6-fold quotients : {4,6}*48c
12-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,72}*576c, {4,72}*576d, {4,36}*576b
3-fold covers : {4,108}*864b
4-fold covers : {4,36}*1152b, {4,144}*1152c, {4,144}*1152d, {4,36}*1152d, {8,36}*1152e, {8,36}*1152f, {4,72}*1152c, {4,72}*1152d
5-fold covers : {4,180}*1440b
6-fold covers : {4,216}*1728c, {4,216}*1728d, {4,108}*1728b, {12,36}*1728e, {12,36}*1728f
Permutation Representation (GAP) :
s0 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144);;
s1 := ( 2, 3)( 5, 9)( 6, 11)( 7, 10)( 8, 12)( 13, 29)( 14, 31)( 15, 30)
( 16, 32)( 17, 25)( 18, 27)( 19, 26)( 20, 28)( 21, 33)( 22, 35)( 23, 34)
( 24, 36)( 38, 39)( 41, 45)( 42, 47)( 43, 46)( 44, 48)( 49, 65)( 50, 67)
( 51, 66)( 52, 68)( 53, 61)( 54, 63)( 55, 62)( 56, 64)( 57, 69)( 58, 71)
( 59, 70)( 60, 72)( 73,109)( 74,111)( 75,110)( 76,112)( 77,117)( 78,119)
( 79,118)( 80,120)( 81,113)( 82,115)( 83,114)( 84,116)( 85,137)( 86,139)
( 87,138)( 88,140)( 89,133)( 90,135)( 91,134)( 92,136)( 93,141)( 94,143)
( 95,142)( 96,144)( 97,125)( 98,127)( 99,126)(100,128)(101,121)(102,123)
(103,122)(104,124)(105,129)(106,131)(107,130)(108,132);;
s2 := ( 1, 85)( 2, 86)( 3, 88)( 4, 87)( 5, 93)( 6, 94)( 7, 96)( 8, 95)
( 9, 89)( 10, 90)( 11, 92)( 12, 91)( 13, 73)( 14, 74)( 15, 76)( 16, 75)
( 17, 81)( 18, 82)( 19, 84)( 20, 83)( 21, 77)( 22, 78)( 23, 80)( 24, 79)
( 25,101)( 26,102)( 27,104)( 28,103)( 29, 97)( 30, 98)( 31,100)( 32, 99)
( 33,105)( 34,106)( 35,108)( 36,107)( 37,121)( 38,122)( 39,124)( 40,123)
( 41,129)( 42,130)( 43,132)( 44,131)( 45,125)( 46,126)( 47,128)( 48,127)
( 49,109)( 50,110)( 51,112)( 52,111)( 53,117)( 54,118)( 55,120)( 56,119)
( 57,113)( 58,114)( 59,116)( 60,115)( 61,137)( 62,138)( 63,140)( 64,139)
( 65,133)( 66,134)( 67,136)( 68,135)( 69,141)( 70,142)( 71,144)( 72,143);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(144)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)
(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)
(143,144);
s1 := Sym(144)!( 2, 3)( 5, 9)( 6, 11)( 7, 10)( 8, 12)( 13, 29)( 14, 31)
( 15, 30)( 16, 32)( 17, 25)( 18, 27)( 19, 26)( 20, 28)( 21, 33)( 22, 35)
( 23, 34)( 24, 36)( 38, 39)( 41, 45)( 42, 47)( 43, 46)( 44, 48)( 49, 65)
( 50, 67)( 51, 66)( 52, 68)( 53, 61)( 54, 63)( 55, 62)( 56, 64)( 57, 69)
( 58, 71)( 59, 70)( 60, 72)( 73,109)( 74,111)( 75,110)( 76,112)( 77,117)
( 78,119)( 79,118)( 80,120)( 81,113)( 82,115)( 83,114)( 84,116)( 85,137)
( 86,139)( 87,138)( 88,140)( 89,133)( 90,135)( 91,134)( 92,136)( 93,141)
( 94,143)( 95,142)( 96,144)( 97,125)( 98,127)( 99,126)(100,128)(101,121)
(102,123)(103,122)(104,124)(105,129)(106,131)(107,130)(108,132);
s2 := Sym(144)!( 1, 85)( 2, 86)( 3, 88)( 4, 87)( 5, 93)( 6, 94)( 7, 96)
( 8, 95)( 9, 89)( 10, 90)( 11, 92)( 12, 91)( 13, 73)( 14, 74)( 15, 76)
( 16, 75)( 17, 81)( 18, 82)( 19, 84)( 20, 83)( 21, 77)( 22, 78)( 23, 80)
( 24, 79)( 25,101)( 26,102)( 27,104)( 28,103)( 29, 97)( 30, 98)( 31,100)
( 32, 99)( 33,105)( 34,106)( 35,108)( 36,107)( 37,121)( 38,122)( 39,124)
( 40,123)( 41,129)( 42,130)( 43,132)( 44,131)( 45,125)( 46,126)( 47,128)
( 48,127)( 49,109)( 50,110)( 51,112)( 52,111)( 53,117)( 54,118)( 55,120)
( 56,119)( 57,113)( 58,114)( 59,116)( 60,115)( 61,137)( 62,138)( 63,140)
( 64,139)( 65,133)( 66,134)( 67,136)( 68,135)( 69,141)( 70,142)( 71,144)
( 72,143);
poly := sub<Sym(144)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope