Polytope of Type {6,12,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,4}*1728d
if this polytope has a name.
Group : SmallGroup(1728,30242)
Rank : 4
Schlafli Type : {6,12,4}
Number of vertices, edges, etc : 18, 108, 72, 4
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,4}*864e
   3-fold quotients : {6,12,4}*576f
   4-fold quotients : {6,3,4}*432
   6-fold quotients : {6,6,4}*288e
   9-fold quotients : {2,12,4}*192b
   12-fold quotients : {6,3,4}*144
   18-fold quotients : {2,6,4}*96c
   36-fold quotients : {2,3,4}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  5,  9)(  6, 10)(  7, 11)(  8, 12)( 13, 25)( 14, 26)( 15, 27)( 16, 28)
( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 29)( 22, 30)( 23, 31)( 24, 32)
( 41, 45)( 42, 46)( 43, 47)( 44, 48)( 49, 61)( 50, 62)( 51, 63)( 52, 64)
( 53, 69)( 54, 70)( 55, 71)( 56, 72)( 57, 65)( 58, 66)( 59, 67)( 60, 68)
( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 85, 97)( 86, 98)( 87, 99)( 88,100)
( 89,105)( 90,106)( 91,107)( 92,108)( 93,101)( 94,102)( 95,103)( 96,104)
(113,117)(114,118)(115,119)(116,120)(121,133)(122,134)(123,135)(124,136)
(125,141)(126,142)(127,143)(128,144)(129,137)(130,138)(131,139)(132,140)
(149,153)(150,154)(151,155)(152,156)(157,169)(158,170)(159,171)(160,172)
(161,177)(162,178)(163,179)(164,180)(165,173)(166,174)(167,175)(168,176)
(185,189)(186,190)(187,191)(188,192)(193,205)(194,206)(195,207)(196,208)
(197,213)(198,214)(199,215)(200,216)(201,209)(202,210)(203,211)(204,212)
(221,225)(222,226)(223,227)(224,228)(229,241)(230,242)(231,243)(232,244)
(233,249)(234,250)(235,251)(236,252)(237,245)(238,246)(239,247)(240,248)
(257,261)(258,262)(259,263)(260,264)(265,277)(266,278)(267,279)(268,280)
(269,285)(270,286)(271,287)(272,288)(273,281)(274,282)(275,283)(276,284)
(293,297)(294,298)(295,299)(296,300)(301,313)(302,314)(303,315)(304,316)
(305,321)(306,322)(307,323)(308,324)(309,317)(310,318)(311,319)(312,320)
(329,333)(330,334)(331,335)(332,336)(337,349)(338,350)(339,351)(340,352)
(341,357)(342,358)(343,359)(344,360)(345,353)(346,354)(347,355)(348,356)
(365,369)(366,370)(367,371)(368,372)(373,385)(374,386)(375,387)(376,388)
(377,393)(378,394)(379,395)(380,396)(381,389)(382,390)(383,391)(384,392)
(401,405)(402,406)(403,407)(404,408)(409,421)(410,422)(411,423)(412,424)
(413,429)(414,430)(415,431)(416,432)(417,425)(418,426)(419,427)(420,428);;
s1 := (  1, 13)(  2, 14)(  3, 16)(  4, 15)(  5, 17)(  6, 18)(  7, 20)(  8, 19)
(  9, 21)( 10, 22)( 11, 24)( 12, 23)( 27, 28)( 31, 32)( 35, 36)( 37, 85)
( 38, 86)( 39, 88)( 40, 87)( 41, 89)( 42, 90)( 43, 92)( 44, 91)( 45, 93)
( 46, 94)( 47, 96)( 48, 95)( 49, 73)( 50, 74)( 51, 76)( 52, 75)( 53, 77)
( 54, 78)( 55, 80)( 56, 79)( 57, 81)( 58, 82)( 59, 84)( 60, 83)( 61, 97)
( 62, 98)( 63,100)( 64, 99)( 65,101)( 66,102)( 67,104)( 68,103)( 69,105)
( 70,106)( 71,108)( 72,107)(109,121)(110,122)(111,124)(112,123)(113,125)
(114,126)(115,128)(116,127)(117,129)(118,130)(119,132)(120,131)(135,136)
(139,140)(143,144)(145,193)(146,194)(147,196)(148,195)(149,197)(150,198)
(151,200)(152,199)(153,201)(154,202)(155,204)(156,203)(157,181)(158,182)
(159,184)(160,183)(161,185)(162,186)(163,188)(164,187)(165,189)(166,190)
(167,192)(168,191)(169,205)(170,206)(171,208)(172,207)(173,209)(174,210)
(175,212)(176,211)(177,213)(178,214)(179,216)(180,215)(217,337)(218,338)
(219,340)(220,339)(221,341)(222,342)(223,344)(224,343)(225,345)(226,346)
(227,348)(228,347)(229,325)(230,326)(231,328)(232,327)(233,329)(234,330)
(235,332)(236,331)(237,333)(238,334)(239,336)(240,335)(241,349)(242,350)
(243,352)(244,351)(245,353)(246,354)(247,356)(248,355)(249,357)(250,358)
(251,360)(252,359)(253,409)(254,410)(255,412)(256,411)(257,413)(258,414)
(259,416)(260,415)(261,417)(262,418)(263,420)(264,419)(265,397)(266,398)
(267,400)(268,399)(269,401)(270,402)(271,404)(272,403)(273,405)(274,406)
(275,408)(276,407)(277,421)(278,422)(279,424)(280,423)(281,425)(282,426)
(283,428)(284,427)(285,429)(286,430)(287,432)(288,431)(289,373)(290,374)
(291,376)(292,375)(293,377)(294,378)(295,380)(296,379)(297,381)(298,382)
(299,384)(300,383)(301,361)(302,362)(303,364)(304,363)(305,365)(306,366)
(307,368)(308,367)(309,369)(310,370)(311,372)(312,371)(313,385)(314,386)
(315,388)(316,387)(317,389)(318,390)(319,392)(320,391)(321,393)(322,394)
(323,396)(324,395);;
s2 := (  1,253)(  2,256)(  3,255)(  4,254)(  5,257)(  6,260)(  7,259)(  8,258)
(  9,261)( 10,264)( 11,263)( 12,262)( 13,285)( 14,288)( 15,287)( 16,286)
( 17,277)( 18,280)( 19,279)( 20,278)( 21,281)( 22,284)( 23,283)( 24,282)
( 25,269)( 26,272)( 27,271)( 28,270)( 29,273)( 30,276)( 31,275)( 32,274)
( 33,265)( 34,268)( 35,267)( 36,266)( 37,217)( 38,220)( 39,219)( 40,218)
( 41,221)( 42,224)( 43,223)( 44,222)( 45,225)( 46,228)( 47,227)( 48,226)
( 49,249)( 50,252)( 51,251)( 52,250)( 53,241)( 54,244)( 55,243)( 56,242)
( 57,245)( 58,248)( 59,247)( 60,246)( 61,233)( 62,236)( 63,235)( 64,234)
( 65,237)( 66,240)( 67,239)( 68,238)( 69,229)( 70,232)( 71,231)( 72,230)
( 73,289)( 74,292)( 75,291)( 76,290)( 77,293)( 78,296)( 79,295)( 80,294)
( 81,297)( 82,300)( 83,299)( 84,298)( 85,321)( 86,324)( 87,323)( 88,322)
( 89,313)( 90,316)( 91,315)( 92,314)( 93,317)( 94,320)( 95,319)( 96,318)
( 97,305)( 98,308)( 99,307)(100,306)(101,309)(102,312)(103,311)(104,310)
(105,301)(106,304)(107,303)(108,302)(109,361)(110,364)(111,363)(112,362)
(113,365)(114,368)(115,367)(116,366)(117,369)(118,372)(119,371)(120,370)
(121,393)(122,396)(123,395)(124,394)(125,385)(126,388)(127,387)(128,386)
(129,389)(130,392)(131,391)(132,390)(133,377)(134,380)(135,379)(136,378)
(137,381)(138,384)(139,383)(140,382)(141,373)(142,376)(143,375)(144,374)
(145,325)(146,328)(147,327)(148,326)(149,329)(150,332)(151,331)(152,330)
(153,333)(154,336)(155,335)(156,334)(157,357)(158,360)(159,359)(160,358)
(161,349)(162,352)(163,351)(164,350)(165,353)(166,356)(167,355)(168,354)
(169,341)(170,344)(171,343)(172,342)(173,345)(174,348)(175,347)(176,346)
(177,337)(178,340)(179,339)(180,338)(181,397)(182,400)(183,399)(184,398)
(185,401)(186,404)(187,403)(188,402)(189,405)(190,408)(191,407)(192,406)
(193,429)(194,432)(195,431)(196,430)(197,421)(198,424)(199,423)(200,422)
(201,425)(202,428)(203,427)(204,426)(205,413)(206,416)(207,415)(208,414)
(209,417)(210,420)(211,419)(212,418)(213,409)(214,412)(215,411)(216,410);;
s3 := (  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)
(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)
(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)
(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)
(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)
(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)(223,224)
(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)(239,240)
(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)(255,256)
(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)(271,272)
(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)(287,288)
(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,302)(303,304)
(305,306)(307,308)(309,310)(311,312)(313,314)(315,316)(317,318)(319,320)
(321,322)(323,324)(325,326)(327,328)(329,330)(331,332)(333,334)(335,336)
(337,338)(339,340)(341,342)(343,344)(345,346)(347,348)(349,350)(351,352)
(353,354)(355,356)(357,358)(359,360)(361,362)(363,364)(365,366)(367,368)
(369,370)(371,372)(373,374)(375,376)(377,378)(379,380)(381,382)(383,384)
(385,386)(387,388)(389,390)(391,392)(393,394)(395,396)(397,398)(399,400)
(401,402)(403,404)(405,406)(407,408)(409,410)(411,412)(413,414)(415,416)
(417,418)(419,420)(421,422)(423,424)(425,426)(427,428)(429,430)(431,432);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s2*s1*s3*s2*s3*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!(  5,  9)(  6, 10)(  7, 11)(  8, 12)( 13, 25)( 14, 26)( 15, 27)
( 16, 28)( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 29)( 22, 30)( 23, 31)
( 24, 32)( 41, 45)( 42, 46)( 43, 47)( 44, 48)( 49, 61)( 50, 62)( 51, 63)
( 52, 64)( 53, 69)( 54, 70)( 55, 71)( 56, 72)( 57, 65)( 58, 66)( 59, 67)
( 60, 68)( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 85, 97)( 86, 98)( 87, 99)
( 88,100)( 89,105)( 90,106)( 91,107)( 92,108)( 93,101)( 94,102)( 95,103)
( 96,104)(113,117)(114,118)(115,119)(116,120)(121,133)(122,134)(123,135)
(124,136)(125,141)(126,142)(127,143)(128,144)(129,137)(130,138)(131,139)
(132,140)(149,153)(150,154)(151,155)(152,156)(157,169)(158,170)(159,171)
(160,172)(161,177)(162,178)(163,179)(164,180)(165,173)(166,174)(167,175)
(168,176)(185,189)(186,190)(187,191)(188,192)(193,205)(194,206)(195,207)
(196,208)(197,213)(198,214)(199,215)(200,216)(201,209)(202,210)(203,211)
(204,212)(221,225)(222,226)(223,227)(224,228)(229,241)(230,242)(231,243)
(232,244)(233,249)(234,250)(235,251)(236,252)(237,245)(238,246)(239,247)
(240,248)(257,261)(258,262)(259,263)(260,264)(265,277)(266,278)(267,279)
(268,280)(269,285)(270,286)(271,287)(272,288)(273,281)(274,282)(275,283)
(276,284)(293,297)(294,298)(295,299)(296,300)(301,313)(302,314)(303,315)
(304,316)(305,321)(306,322)(307,323)(308,324)(309,317)(310,318)(311,319)
(312,320)(329,333)(330,334)(331,335)(332,336)(337,349)(338,350)(339,351)
(340,352)(341,357)(342,358)(343,359)(344,360)(345,353)(346,354)(347,355)
(348,356)(365,369)(366,370)(367,371)(368,372)(373,385)(374,386)(375,387)
(376,388)(377,393)(378,394)(379,395)(380,396)(381,389)(382,390)(383,391)
(384,392)(401,405)(402,406)(403,407)(404,408)(409,421)(410,422)(411,423)
(412,424)(413,429)(414,430)(415,431)(416,432)(417,425)(418,426)(419,427)
(420,428);
s1 := Sym(432)!(  1, 13)(  2, 14)(  3, 16)(  4, 15)(  5, 17)(  6, 18)(  7, 20)
(  8, 19)(  9, 21)( 10, 22)( 11, 24)( 12, 23)( 27, 28)( 31, 32)( 35, 36)
( 37, 85)( 38, 86)( 39, 88)( 40, 87)( 41, 89)( 42, 90)( 43, 92)( 44, 91)
( 45, 93)( 46, 94)( 47, 96)( 48, 95)( 49, 73)( 50, 74)( 51, 76)( 52, 75)
( 53, 77)( 54, 78)( 55, 80)( 56, 79)( 57, 81)( 58, 82)( 59, 84)( 60, 83)
( 61, 97)( 62, 98)( 63,100)( 64, 99)( 65,101)( 66,102)( 67,104)( 68,103)
( 69,105)( 70,106)( 71,108)( 72,107)(109,121)(110,122)(111,124)(112,123)
(113,125)(114,126)(115,128)(116,127)(117,129)(118,130)(119,132)(120,131)
(135,136)(139,140)(143,144)(145,193)(146,194)(147,196)(148,195)(149,197)
(150,198)(151,200)(152,199)(153,201)(154,202)(155,204)(156,203)(157,181)
(158,182)(159,184)(160,183)(161,185)(162,186)(163,188)(164,187)(165,189)
(166,190)(167,192)(168,191)(169,205)(170,206)(171,208)(172,207)(173,209)
(174,210)(175,212)(176,211)(177,213)(178,214)(179,216)(180,215)(217,337)
(218,338)(219,340)(220,339)(221,341)(222,342)(223,344)(224,343)(225,345)
(226,346)(227,348)(228,347)(229,325)(230,326)(231,328)(232,327)(233,329)
(234,330)(235,332)(236,331)(237,333)(238,334)(239,336)(240,335)(241,349)
(242,350)(243,352)(244,351)(245,353)(246,354)(247,356)(248,355)(249,357)
(250,358)(251,360)(252,359)(253,409)(254,410)(255,412)(256,411)(257,413)
(258,414)(259,416)(260,415)(261,417)(262,418)(263,420)(264,419)(265,397)
(266,398)(267,400)(268,399)(269,401)(270,402)(271,404)(272,403)(273,405)
(274,406)(275,408)(276,407)(277,421)(278,422)(279,424)(280,423)(281,425)
(282,426)(283,428)(284,427)(285,429)(286,430)(287,432)(288,431)(289,373)
(290,374)(291,376)(292,375)(293,377)(294,378)(295,380)(296,379)(297,381)
(298,382)(299,384)(300,383)(301,361)(302,362)(303,364)(304,363)(305,365)
(306,366)(307,368)(308,367)(309,369)(310,370)(311,372)(312,371)(313,385)
(314,386)(315,388)(316,387)(317,389)(318,390)(319,392)(320,391)(321,393)
(322,394)(323,396)(324,395);
s2 := Sym(432)!(  1,253)(  2,256)(  3,255)(  4,254)(  5,257)(  6,260)(  7,259)
(  8,258)(  9,261)( 10,264)( 11,263)( 12,262)( 13,285)( 14,288)( 15,287)
( 16,286)( 17,277)( 18,280)( 19,279)( 20,278)( 21,281)( 22,284)( 23,283)
( 24,282)( 25,269)( 26,272)( 27,271)( 28,270)( 29,273)( 30,276)( 31,275)
( 32,274)( 33,265)( 34,268)( 35,267)( 36,266)( 37,217)( 38,220)( 39,219)
( 40,218)( 41,221)( 42,224)( 43,223)( 44,222)( 45,225)( 46,228)( 47,227)
( 48,226)( 49,249)( 50,252)( 51,251)( 52,250)( 53,241)( 54,244)( 55,243)
( 56,242)( 57,245)( 58,248)( 59,247)( 60,246)( 61,233)( 62,236)( 63,235)
( 64,234)( 65,237)( 66,240)( 67,239)( 68,238)( 69,229)( 70,232)( 71,231)
( 72,230)( 73,289)( 74,292)( 75,291)( 76,290)( 77,293)( 78,296)( 79,295)
( 80,294)( 81,297)( 82,300)( 83,299)( 84,298)( 85,321)( 86,324)( 87,323)
( 88,322)( 89,313)( 90,316)( 91,315)( 92,314)( 93,317)( 94,320)( 95,319)
( 96,318)( 97,305)( 98,308)( 99,307)(100,306)(101,309)(102,312)(103,311)
(104,310)(105,301)(106,304)(107,303)(108,302)(109,361)(110,364)(111,363)
(112,362)(113,365)(114,368)(115,367)(116,366)(117,369)(118,372)(119,371)
(120,370)(121,393)(122,396)(123,395)(124,394)(125,385)(126,388)(127,387)
(128,386)(129,389)(130,392)(131,391)(132,390)(133,377)(134,380)(135,379)
(136,378)(137,381)(138,384)(139,383)(140,382)(141,373)(142,376)(143,375)
(144,374)(145,325)(146,328)(147,327)(148,326)(149,329)(150,332)(151,331)
(152,330)(153,333)(154,336)(155,335)(156,334)(157,357)(158,360)(159,359)
(160,358)(161,349)(162,352)(163,351)(164,350)(165,353)(166,356)(167,355)
(168,354)(169,341)(170,344)(171,343)(172,342)(173,345)(174,348)(175,347)
(176,346)(177,337)(178,340)(179,339)(180,338)(181,397)(182,400)(183,399)
(184,398)(185,401)(186,404)(187,403)(188,402)(189,405)(190,408)(191,407)
(192,406)(193,429)(194,432)(195,431)(196,430)(197,421)(198,424)(199,423)
(200,422)(201,425)(202,428)(203,427)(204,426)(205,413)(206,416)(207,415)
(208,414)(209,417)(210,420)(211,419)(212,418)(213,409)(214,412)(215,411)
(216,410);
s3 := Sym(432)!(  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)
(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)
(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)
(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)
(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)
(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)
(207,208)(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)
(223,224)(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)
(239,240)(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)
(255,256)(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)
(271,272)(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)
(287,288)(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,302)
(303,304)(305,306)(307,308)(309,310)(311,312)(313,314)(315,316)(317,318)
(319,320)(321,322)(323,324)(325,326)(327,328)(329,330)(331,332)(333,334)
(335,336)(337,338)(339,340)(341,342)(343,344)(345,346)(347,348)(349,350)
(351,352)(353,354)(355,356)(357,358)(359,360)(361,362)(363,364)(365,366)
(367,368)(369,370)(371,372)(373,374)(375,376)(377,378)(379,380)(381,382)
(383,384)(385,386)(387,388)(389,390)(391,392)(393,394)(395,396)(397,398)
(399,400)(401,402)(403,404)(405,406)(407,408)(409,410)(411,412)(413,414)
(415,416)(417,418)(419,420)(421,422)(423,424)(425,426)(427,428)(429,430)
(431,432);
poly := sub<Sym(432)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3, s3*s2*s1*s3*s2*s3*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope