Polytope of Type {6,3,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3,4}*432
Also Known As : {{6,3}6,{3,4}3}. if this polytope has another name.
Group : SmallGroup(432,523)
Rank : 4
Schlafli Type : {6,3,4}
Number of vertices, edges, etc : 18, 27, 18, 4
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,3,4,2} of size 864
Vertex Figure Of :
   {2,6,3,4} of size 864
   {3,6,3,4} of size 1296
   {4,6,3,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,3,4}*144
   9-fold quotients : {2,3,4}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,3,4}*864, {6,6,4}*864e, {6,6,4}*864f
   3-fold covers : {18,3,4}*1296, {6,3,4}*1296a, {6,9,4}*1296a, {6,9,4}*1296b, {6,9,4}*1296c, {6,9,4}*1296d
   4-fold covers : {6,12,4}*1728d, {6,12,4}*1728e, {6,3,8}*1728, {12,6,4}*1728e, {6,3,4}*1728, {6,6,4}*1728a, {12,3,4}*1728
Permutation Representation (GAP) :
s0 := ( 5, 9)( 6,10)( 7,11)( 8,12)(13,25)(14,26)(15,27)(16,28)(17,33)(18,34)
(19,35)(20,36)(21,29)(22,30)(23,31)(24,32);;
s1 := ( 1,13)( 2,15)( 3,14)( 4,16)( 5,17)( 6,19)( 7,18)( 8,20)( 9,21)(10,23)
(11,22)(12,24)(26,27)(30,31)(34,35);;
s2 := ( 3, 4)( 7, 8)(11,12)(13,33)(14,34)(15,36)(16,35)(17,25)(18,26)(19,28)
(20,27)(21,29)(22,30)(23,32)(24,31);;
s3 := ( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)
(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s3*s2*s1*s3*s2*s1*s3*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(36)!( 5, 9)( 6,10)( 7,11)( 8,12)(13,25)(14,26)(15,27)(16,28)(17,33)
(18,34)(19,35)(20,36)(21,29)(22,30)(23,31)(24,32);
s1 := Sym(36)!( 1,13)( 2,15)( 3,14)( 4,16)( 5,17)( 6,19)( 7,18)( 8,20)( 9,21)
(10,23)(11,22)(12,24)(26,27)(30,31)(34,35);
s2 := Sym(36)!( 3, 4)( 7, 8)(11,12)(13,33)(14,34)(15,36)(16,35)(17,25)(18,26)
(19,28)(20,27)(21,29)(22,30)(23,32)(24,31);
s3 := Sym(36)!( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)
(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35);
poly := sub<Sym(36)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s3*s2*s1*s3*s2*s1*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 >; 
 
References : None.
to this polytope