include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,2,18,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,18,6}*1728b
if this polytope has a name.
Group : SmallGroup(1728,30790)
Rank : 5
Schlafli Type : {4,2,18,6}
Number of vertices, edges, etc : 4, 4, 18, 54, 6
Order of s0s1s2s3s4 : 36
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,2,9,6}*864, {2,2,18,6}*864b
3-fold quotients : {4,2,18,2}*576, {4,2,6,6}*576c
4-fold quotients : {2,2,9,6}*432
6-fold quotients : {4,2,9,2}*288, {2,2,18,2}*288, {4,2,3,6}*288, {2,2,6,6}*288c
9-fold quotients : {4,2,6,2}*192
12-fold quotients : {2,2,9,2}*144, {2,2,3,6}*144
18-fold quotients : {4,2,3,2}*96, {2,2,6,2}*96
27-fold quotients : {4,2,2,2}*64
36-fold quotients : {2,2,3,2}*48
54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := ( 6, 7)( 8,11)( 9,13)(10,12)(14,24)(15,23)(16,25)(17,30)(18,29)(19,31)
(20,27)(21,26)(22,28)(33,34)(35,38)(36,40)(37,39)(41,51)(42,50)(43,52)(44,57)
(45,56)(46,58)(47,54)(48,53)(49,55);;
s3 := ( 5,44)( 6,46)( 7,45)( 8,41)( 9,43)(10,42)(11,47)(12,49)(13,48)(14,35)
(15,37)(16,36)(17,32)(18,34)(19,33)(20,38)(21,40)(22,39)(23,54)(24,53)(25,55)
(26,51)(27,50)(28,52)(29,57)(30,56)(31,58);;
s4 := ( 8,11)( 9,12)(10,13)(17,20)(18,21)(19,22)(26,29)(27,30)(28,31)(35,38)
(36,39)(37,40)(44,47)(45,48)(46,49)(53,56)(54,57)(55,58);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3,
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(58)!(2,3);
s1 := Sym(58)!(1,2)(3,4);
s2 := Sym(58)!( 6, 7)( 8,11)( 9,13)(10,12)(14,24)(15,23)(16,25)(17,30)(18,29)
(19,31)(20,27)(21,26)(22,28)(33,34)(35,38)(36,40)(37,39)(41,51)(42,50)(43,52)
(44,57)(45,56)(46,58)(47,54)(48,53)(49,55);
s3 := Sym(58)!( 5,44)( 6,46)( 7,45)( 8,41)( 9,43)(10,42)(11,47)(12,49)(13,48)
(14,35)(15,37)(16,36)(17,32)(18,34)(19,33)(20,38)(21,40)(22,39)(23,54)(24,53)
(25,55)(26,51)(27,50)(28,52)(29,57)(30,56)(31,58);
s4 := Sym(58)!( 8,11)( 9,12)(10,13)(17,20)(18,21)(19,22)(26,29)(27,30)(28,31)
(35,38)(36,39)(37,40)(44,47)(45,48)(46,49)(53,56)(54,57)(55,58);
poly := sub<Sym(58)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope