Polytope of Type {2,2,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,6,6}*288c
if this polytope has a name.
Group : SmallGroup(288,1040)
Rank : 5
Schlafli Type : {2,2,6,6}
Number of vertices, edges, etc : 2, 2, 6, 18, 6
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,6,6,2} of size 576
   {2,2,6,6,3} of size 864
   {2,2,6,6,4} of size 1152
   {2,2,6,6,6} of size 1728
   {2,2,6,6,6} of size 1728
Vertex Figure Of :
   {2,2,2,6,6} of size 576
   {3,2,2,6,6} of size 864
   {4,2,2,6,6} of size 1152
   {5,2,2,6,6} of size 1440
   {6,2,2,6,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,3,6}*144
   3-fold quotients : {2,2,6,2}*96
   6-fold quotients : {2,2,3,2}*48
   9-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,2,12,6}*576b, {2,4,6,6}*576b, {4,2,6,6}*576c, {2,2,6,12}*576c
   3-fold covers : {2,2,18,6}*864b, {2,2,6,6}*864c, {2,2,6,6}*864d, {2,6,6,6}*864e, {2,6,6,6}*864f, {6,2,6,6}*864c
   4-fold covers : {4,4,6,6}*1152b, {2,4,12,6}*1152b, {2,2,12,12}*1152c, {4,2,6,12}*1152a, {4,2,12,6}*1152c, {2,4,6,12}*1152a, {2,8,6,6}*1152b, {8,2,6,6}*1152c, {2,2,6,24}*1152a, {2,2,24,6}*1152c, {2,2,6,6}*1152b, {2,2,6,12}*1152b, {2,4,6,6}*1152b
   5-fold covers : {2,2,6,30}*1440a, {2,10,6,6}*1440c, {10,2,6,6}*1440c, {2,2,30,6}*1440c
   6-fold covers : {2,2,36,6}*1728b, {2,2,12,6}*1728a, {2,4,18,6}*1728b, {4,2,18,6}*1728b, {2,4,6,6}*1728a, {4,2,6,6}*1728c, {2,2,18,12}*1728b, {2,2,6,12}*1728c, {2,6,12,6}*1728d, {2,6,12,6}*1728e, {2,12,6,6}*1728c, {6,2,12,6}*1728b, {12,2,6,6}*1728c, {4,6,6,6}*1728e, {6,4,6,6}*1728b, {4,2,6,6}*1728d, {2,2,6,12}*1728g, {2,2,12,6}*1728g, {4,6,6,6}*1728h, {2,4,6,6}*1728h, {2,6,6,12}*1728f, {2,6,6,12}*1728g, {2,12,6,6}*1728g, {6,2,6,12}*1728c
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 7, 8)( 9,10)(11,12)(13,14)(15,18)(16,17)(19,22)(20,21);;
s3 := ( 5,19)( 6,15)( 7,13)( 8,21)( 9,11)(10,20)(12,17)(14,16)(18,22);;
s4 := ( 9,10)(13,14)(15,16)(17,18)(19,20)(21,22);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(22)!(1,2);
s1 := Sym(22)!(3,4);
s2 := Sym(22)!( 7, 8)( 9,10)(11,12)(13,14)(15,18)(16,17)(19,22)(20,21);
s3 := Sym(22)!( 5,19)( 6,15)( 7,13)( 8,21)( 9,11)(10,20)(12,17)(14,16)(18,22);
s4 := Sym(22)!( 9,10)(13,14)(15,16)(17,18)(19,20)(21,22);
poly := sub<Sym(22)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3 >; 
 

to this polytope