include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6,4}*1728a
if this polytope has a name.
Group : SmallGroup(1728,30804)
Rank : 5
Schlafli Type : {2,6,6,4}
Number of vertices, edges, etc : 2, 18, 54, 36, 4
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,6,2}*864a
3-fold quotients : {2,6,6,4}*576b
4-fold quotients : {2,6,3,2}*432
6-fold quotients : {2,6,6,2}*288b
9-fold quotients : {2,2,6,4}*192a
12-fold quotients : {2,6,3,2}*144
18-fold quotients : {2,2,6,2}*96
27-fold quotients : {2,2,2,4}*64
36-fold quotients : {2,2,3,2}*48
54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 9)( 7, 11)( 8, 10)( 13, 14)( 15, 18)( 16, 20)( 17, 19)
( 22, 23)( 24, 27)( 25, 29)( 26, 28)( 31, 32)( 33, 36)( 34, 38)( 35, 37)
( 40, 41)( 42, 45)( 43, 47)( 44, 46)( 49, 50)( 51, 54)( 52, 56)( 53, 55)
( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 67, 68)( 69, 72)( 70, 74)( 71, 73)
( 76, 77)( 78, 81)( 79, 83)( 80, 82)( 85, 86)( 87, 90)( 88, 92)( 89, 91)
( 94, 95)( 96, 99)( 97,101)( 98,100)(103,104)(105,108)(106,110)(107,109);;
s2 := ( 3, 6)( 4, 7)( 5, 8)( 12, 24)( 13, 25)( 14, 26)( 15, 21)( 16, 22)
( 17, 23)( 18, 27)( 19, 28)( 20, 29)( 30, 33)( 31, 34)( 32, 35)( 39, 51)
( 40, 52)( 41, 53)( 42, 48)( 43, 49)( 44, 50)( 45, 54)( 46, 55)( 47, 56)
( 57, 60)( 58, 61)( 59, 62)( 66, 78)( 67, 79)( 68, 80)( 69, 75)( 70, 76)
( 71, 77)( 72, 81)( 73, 82)( 74, 83)( 84, 87)( 85, 88)( 86, 89)( 93,105)
( 94,106)( 95,107)( 96,102)( 97,103)( 98,104)( 99,108)(100,109)(101,110);;
s3 := ( 3, 12)( 4, 13)( 5, 14)( 6, 20)( 7, 18)( 8, 19)( 9, 16)( 10, 17)
( 11, 15)( 24, 29)( 25, 27)( 26, 28)( 30, 39)( 31, 40)( 32, 41)( 33, 47)
( 34, 45)( 35, 46)( 36, 43)( 37, 44)( 38, 42)( 51, 56)( 52, 54)( 53, 55)
( 57, 93)( 58, 94)( 59, 95)( 60,101)( 61, 99)( 62,100)( 63, 97)( 64, 98)
( 65, 96)( 66, 84)( 67, 85)( 68, 86)( 69, 92)( 70, 90)( 71, 91)( 72, 88)
( 73, 89)( 74, 87)( 75,102)( 76,103)( 77,104)( 78,110)( 79,108)( 80,109)
( 81,106)( 82,107)( 83,105);;
s4 := ( 3, 57)( 4, 58)( 5, 59)( 6, 60)( 7, 61)( 8, 62)( 9, 63)( 10, 64)
( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)( 16, 70)( 17, 71)( 18, 72)
( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)( 25, 79)( 26, 80)
( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)( 32, 86)( 33, 87)( 34, 88)
( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)( 40, 94)( 41, 95)( 42, 96)
( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)( 48,102)( 49,103)( 50,104)
( 51,105)( 52,106)( 53,107)( 54,108)( 55,109)( 56,110);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s3*s1*s2*s1*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(110)!(1,2);
s1 := Sym(110)!( 4, 5)( 6, 9)( 7, 11)( 8, 10)( 13, 14)( 15, 18)( 16, 20)
( 17, 19)( 22, 23)( 24, 27)( 25, 29)( 26, 28)( 31, 32)( 33, 36)( 34, 38)
( 35, 37)( 40, 41)( 42, 45)( 43, 47)( 44, 46)( 49, 50)( 51, 54)( 52, 56)
( 53, 55)( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 67, 68)( 69, 72)( 70, 74)
( 71, 73)( 76, 77)( 78, 81)( 79, 83)( 80, 82)( 85, 86)( 87, 90)( 88, 92)
( 89, 91)( 94, 95)( 96, 99)( 97,101)( 98,100)(103,104)(105,108)(106,110)
(107,109);
s2 := Sym(110)!( 3, 6)( 4, 7)( 5, 8)( 12, 24)( 13, 25)( 14, 26)( 15, 21)
( 16, 22)( 17, 23)( 18, 27)( 19, 28)( 20, 29)( 30, 33)( 31, 34)( 32, 35)
( 39, 51)( 40, 52)( 41, 53)( 42, 48)( 43, 49)( 44, 50)( 45, 54)( 46, 55)
( 47, 56)( 57, 60)( 58, 61)( 59, 62)( 66, 78)( 67, 79)( 68, 80)( 69, 75)
( 70, 76)( 71, 77)( 72, 81)( 73, 82)( 74, 83)( 84, 87)( 85, 88)( 86, 89)
( 93,105)( 94,106)( 95,107)( 96,102)( 97,103)( 98,104)( 99,108)(100,109)
(101,110);
s3 := Sym(110)!( 3, 12)( 4, 13)( 5, 14)( 6, 20)( 7, 18)( 8, 19)( 9, 16)
( 10, 17)( 11, 15)( 24, 29)( 25, 27)( 26, 28)( 30, 39)( 31, 40)( 32, 41)
( 33, 47)( 34, 45)( 35, 46)( 36, 43)( 37, 44)( 38, 42)( 51, 56)( 52, 54)
( 53, 55)( 57, 93)( 58, 94)( 59, 95)( 60,101)( 61, 99)( 62,100)( 63, 97)
( 64, 98)( 65, 96)( 66, 84)( 67, 85)( 68, 86)( 69, 92)( 70, 90)( 71, 91)
( 72, 88)( 73, 89)( 74, 87)( 75,102)( 76,103)( 77,104)( 78,110)( 79,108)
( 80,109)( 81,106)( 82,107)( 83,105);
s4 := Sym(110)!( 3, 57)( 4, 58)( 5, 59)( 6, 60)( 7, 61)( 8, 62)( 9, 63)
( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)( 16, 70)( 17, 71)
( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)( 25, 79)
( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)( 32, 86)( 33, 87)
( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)( 40, 94)( 41, 95)
( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)( 48,102)( 49,103)
( 50,104)( 51,105)( 52,106)( 53,107)( 54,108)( 55,109)( 56,110);
poly := sub<Sym(110)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s3*s1*s2*s1*s3*s2 >;
to this polytope