include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,18,12,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,18,12,2}*1728b
if this polytope has a name.
Group : SmallGroup(1728,30872)
Rank : 5
Schlafli Type : {2,18,12,2}
Number of vertices, edges, etc : 2, 18, 108, 12, 2
Order of s0s1s2s3s4 : 36
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,18,6,2}*864b
3-fold quotients : {2,18,4,2}*576a, {2,6,12,2}*576c
4-fold quotients : {2,9,6,2}*432
6-fold quotients : {2,18,2,2}*288, {2,6,6,2}*288c
9-fold quotients : {2,6,4,2}*192a
12-fold quotients : {2,9,2,2}*144, {2,3,6,2}*144
18-fold quotients : {2,6,2,2}*96
27-fold quotients : {2,2,4,2}*64
36-fold quotients : {2,3,2,2}*48
54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 9)( 7, 11)( 8, 10)( 12, 22)( 13, 21)( 14, 23)( 15, 28)
( 16, 27)( 17, 29)( 18, 25)( 19, 24)( 20, 26)( 31, 32)( 33, 36)( 34, 38)
( 35, 37)( 39, 49)( 40, 48)( 41, 50)( 42, 55)( 43, 54)( 44, 56)( 45, 52)
( 46, 51)( 47, 53)( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 66, 76)( 67, 75)
( 68, 77)( 69, 82)( 70, 81)( 71, 83)( 72, 79)( 73, 78)( 74, 80)( 85, 86)
( 87, 90)( 88, 92)( 89, 91)( 93,103)( 94,102)( 95,104)( 96,109)( 97,108)
( 98,110)( 99,106)(100,105)(101,107);;
s2 := ( 3, 69)( 4, 71)( 5, 70)( 6, 66)( 7, 68)( 8, 67)( 9, 72)( 10, 74)
( 11, 73)( 12, 60)( 13, 62)( 14, 61)( 15, 57)( 16, 59)( 17, 58)( 18, 63)
( 19, 65)( 20, 64)( 21, 79)( 22, 78)( 23, 80)( 24, 76)( 25, 75)( 26, 77)
( 27, 82)( 28, 81)( 29, 83)( 30, 96)( 31, 98)( 32, 97)( 33, 93)( 34, 95)
( 35, 94)( 36, 99)( 37,101)( 38,100)( 39, 87)( 40, 89)( 41, 88)( 42, 84)
( 43, 86)( 44, 85)( 45, 90)( 46, 92)( 47, 91)( 48,106)( 49,105)( 50,107)
( 51,103)( 52,102)( 53,104)( 54,109)( 55,108)( 56,110);;
s3 := ( 6, 9)( 7, 10)( 8, 11)( 15, 18)( 16, 19)( 17, 20)( 24, 27)( 25, 28)
( 26, 29)( 33, 36)( 34, 37)( 35, 38)( 42, 45)( 43, 46)( 44, 47)( 51, 54)
( 52, 55)( 53, 56)( 57, 84)( 58, 85)( 59, 86)( 60, 90)( 61, 91)( 62, 92)
( 63, 87)( 64, 88)( 65, 89)( 66, 93)( 67, 94)( 68, 95)( 69, 99)( 70,100)
( 71,101)( 72, 96)( 73, 97)( 74, 98)( 75,102)( 76,103)( 77,104)( 78,108)
( 79,109)( 80,110)( 81,105)( 82,106)( 83,107);;
s4 := (111,112);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(112)!(1,2);
s1 := Sym(112)!( 4, 5)( 6, 9)( 7, 11)( 8, 10)( 12, 22)( 13, 21)( 14, 23)
( 15, 28)( 16, 27)( 17, 29)( 18, 25)( 19, 24)( 20, 26)( 31, 32)( 33, 36)
( 34, 38)( 35, 37)( 39, 49)( 40, 48)( 41, 50)( 42, 55)( 43, 54)( 44, 56)
( 45, 52)( 46, 51)( 47, 53)( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 66, 76)
( 67, 75)( 68, 77)( 69, 82)( 70, 81)( 71, 83)( 72, 79)( 73, 78)( 74, 80)
( 85, 86)( 87, 90)( 88, 92)( 89, 91)( 93,103)( 94,102)( 95,104)( 96,109)
( 97,108)( 98,110)( 99,106)(100,105)(101,107);
s2 := Sym(112)!( 3, 69)( 4, 71)( 5, 70)( 6, 66)( 7, 68)( 8, 67)( 9, 72)
( 10, 74)( 11, 73)( 12, 60)( 13, 62)( 14, 61)( 15, 57)( 16, 59)( 17, 58)
( 18, 63)( 19, 65)( 20, 64)( 21, 79)( 22, 78)( 23, 80)( 24, 76)( 25, 75)
( 26, 77)( 27, 82)( 28, 81)( 29, 83)( 30, 96)( 31, 98)( 32, 97)( 33, 93)
( 34, 95)( 35, 94)( 36, 99)( 37,101)( 38,100)( 39, 87)( 40, 89)( 41, 88)
( 42, 84)( 43, 86)( 44, 85)( 45, 90)( 46, 92)( 47, 91)( 48,106)( 49,105)
( 50,107)( 51,103)( 52,102)( 53,104)( 54,109)( 55,108)( 56,110);
s3 := Sym(112)!( 6, 9)( 7, 10)( 8, 11)( 15, 18)( 16, 19)( 17, 20)( 24, 27)
( 25, 28)( 26, 29)( 33, 36)( 34, 37)( 35, 38)( 42, 45)( 43, 46)( 44, 47)
( 51, 54)( 52, 55)( 53, 56)( 57, 84)( 58, 85)( 59, 86)( 60, 90)( 61, 91)
( 62, 92)( 63, 87)( 64, 88)( 65, 89)( 66, 93)( 67, 94)( 68, 95)( 69, 99)
( 70,100)( 71,101)( 72, 96)( 73, 97)( 74, 98)( 75,102)( 76,103)( 77,104)
( 78,108)( 79,109)( 80,110)( 81,105)( 82,106)( 83,107);
s4 := Sym(112)!(111,112);
poly := sub<Sym(112)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope