Polytope of Type {36,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {36,24}*1728a
if this polytope has a name.
Group : SmallGroup(1728,3359)
Rank : 3
Schlafli Type : {36,24}
Number of vertices, edges, etc : 36, 432, 24
Order of s0s1s2 : 72
Order of s0s1s2s1 : 12
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {36,12}*864b
   3-fold quotients : {36,8}*576b, {12,24}*576a
   4-fold quotients : {36,6}*432b, {18,12}*432b
   6-fold quotients : {36,4}*288a, {12,12}*288c
   8-fold quotients : {18,6}*216b
   9-fold quotients : {12,8}*192b
   12-fold quotients : {36,2}*144, {18,4}*144a, {12,6}*144b, {6,12}*144c
   16-fold quotients : {9,6}*108
   18-fold quotients : {12,4}*96a
   24-fold quotients : {18,2}*72, {6,6}*72c
   27-fold quotients : {4,8}*64b
   36-fold quotients : {12,2}*48, {6,4}*48a
   48-fold quotients : {9,2}*36, {3,6}*36
   54-fold quotients : {4,4}*32
   72-fold quotients : {6,2}*24
   108-fold quotients : {2,4}*16, {4,2}*16
   144-fold quotients : {3,2}*12
   216-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4,  7)(  5,  9)(  6,  8)( 10, 21)( 11, 20)( 12, 19)( 13, 27)
( 14, 26)( 15, 25)( 16, 24)( 17, 23)( 18, 22)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 37, 48)( 38, 47)( 39, 46)( 40, 54)( 41, 53)( 42, 52)( 43, 51)
( 44, 50)( 45, 49)( 55, 82)( 56, 84)( 57, 83)( 58, 88)( 59, 90)( 60, 89)
( 61, 85)( 62, 87)( 63, 86)( 64,102)( 65,101)( 66,100)( 67,108)( 68,107)
( 69,106)( 70,105)( 71,104)( 72,103)( 73, 93)( 74, 92)( 75, 91)( 76, 99)
( 77, 98)( 78, 97)( 79, 96)( 80, 95)( 81, 94)(109,136)(110,138)(111,137)
(112,142)(113,144)(114,143)(115,139)(116,141)(117,140)(118,156)(119,155)
(120,154)(121,162)(122,161)(123,160)(124,159)(125,158)(126,157)(127,147)
(128,146)(129,145)(130,153)(131,152)(132,151)(133,150)(134,149)(135,148)
(164,165)(166,169)(167,171)(168,170)(172,183)(173,182)(174,181)(175,189)
(176,188)(177,187)(178,186)(179,185)(180,184)(191,192)(193,196)(194,198)
(195,197)(199,210)(200,209)(201,208)(202,216)(203,215)(204,214)(205,213)
(206,212)(207,211)(217,379)(218,381)(219,380)(220,385)(221,387)(222,386)
(223,382)(224,384)(225,383)(226,399)(227,398)(228,397)(229,405)(230,404)
(231,403)(232,402)(233,401)(234,400)(235,390)(236,389)(237,388)(238,396)
(239,395)(240,394)(241,393)(242,392)(243,391)(244,406)(245,408)(246,407)
(247,412)(248,414)(249,413)(250,409)(251,411)(252,410)(253,426)(254,425)
(255,424)(256,432)(257,431)(258,430)(259,429)(260,428)(261,427)(262,417)
(263,416)(264,415)(265,423)(266,422)(267,421)(268,420)(269,419)(270,418)
(271,325)(272,327)(273,326)(274,331)(275,333)(276,332)(277,328)(278,330)
(279,329)(280,345)(281,344)(282,343)(283,351)(284,350)(285,349)(286,348)
(287,347)(288,346)(289,336)(290,335)(291,334)(292,342)(293,341)(294,340)
(295,339)(296,338)(297,337)(298,352)(299,354)(300,353)(301,358)(302,360)
(303,359)(304,355)(305,357)(306,356)(307,372)(308,371)(309,370)(310,378)
(311,377)(312,376)(313,375)(314,374)(315,373)(316,363)(317,362)(318,361)
(319,369)(320,368)(321,367)(322,366)(323,365)(324,364);;
s1 := (  1,229)(  2,231)(  3,230)(  4,226)(  5,228)(  6,227)(  7,232)(  8,234)
(  9,233)( 10,220)( 11,222)( 12,221)( 13,217)( 14,219)( 15,218)( 16,223)
( 17,225)( 18,224)( 19,240)( 20,239)( 21,238)( 22,237)( 23,236)( 24,235)
( 25,243)( 26,242)( 27,241)( 28,256)( 29,258)( 30,257)( 31,253)( 32,255)
( 33,254)( 34,259)( 35,261)( 36,260)( 37,247)( 38,249)( 39,248)( 40,244)
( 41,246)( 42,245)( 43,250)( 44,252)( 45,251)( 46,267)( 47,266)( 48,265)
( 49,264)( 50,263)( 51,262)( 52,270)( 53,269)( 54,268)( 55,310)( 56,312)
( 57,311)( 58,307)( 59,309)( 60,308)( 61,313)( 62,315)( 63,314)( 64,301)
( 65,303)( 66,302)( 67,298)( 68,300)( 69,299)( 70,304)( 71,306)( 72,305)
( 73,321)( 74,320)( 75,319)( 76,318)( 77,317)( 78,316)( 79,324)( 80,323)
( 81,322)( 82,283)( 83,285)( 84,284)( 85,280)( 86,282)( 87,281)( 88,286)
( 89,288)( 90,287)( 91,274)( 92,276)( 93,275)( 94,271)( 95,273)( 96,272)
( 97,277)( 98,279)( 99,278)(100,294)(101,293)(102,292)(103,291)(104,290)
(105,289)(106,297)(107,296)(108,295)(109,364)(110,366)(111,365)(112,361)
(113,363)(114,362)(115,367)(116,369)(117,368)(118,355)(119,357)(120,356)
(121,352)(122,354)(123,353)(124,358)(125,360)(126,359)(127,375)(128,374)
(129,373)(130,372)(131,371)(132,370)(133,378)(134,377)(135,376)(136,337)
(137,339)(138,338)(139,334)(140,336)(141,335)(142,340)(143,342)(144,341)
(145,328)(146,330)(147,329)(148,325)(149,327)(150,326)(151,331)(152,333)
(153,332)(154,348)(155,347)(156,346)(157,345)(158,344)(159,343)(160,351)
(161,350)(162,349)(163,391)(164,393)(165,392)(166,388)(167,390)(168,389)
(169,394)(170,396)(171,395)(172,382)(173,384)(174,383)(175,379)(176,381)
(177,380)(178,385)(179,387)(180,386)(181,402)(182,401)(183,400)(184,399)
(185,398)(186,397)(187,405)(188,404)(189,403)(190,418)(191,420)(192,419)
(193,415)(194,417)(195,416)(196,421)(197,423)(198,422)(199,409)(200,411)
(201,410)(202,406)(203,408)(204,407)(205,412)(206,414)(207,413)(208,429)
(209,428)(210,427)(211,426)(212,425)(213,424)(214,432)(215,431)(216,430);;
s2 := (  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)( 69, 72)
( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)( 95, 98)
( 96, 99)(103,106)(104,107)(105,108)(109,136)(110,137)(111,138)(112,142)
(113,143)(114,144)(115,139)(116,140)(117,141)(118,145)(119,146)(120,147)
(121,151)(122,152)(123,153)(124,148)(125,149)(126,150)(127,154)(128,155)
(129,156)(130,160)(131,161)(132,162)(133,157)(134,158)(135,159)(163,190)
(164,191)(165,192)(166,196)(167,197)(168,198)(169,193)(170,194)(171,195)
(172,199)(173,200)(174,201)(175,205)(176,206)(177,207)(178,202)(179,203)
(180,204)(181,208)(182,209)(183,210)(184,214)(185,215)(186,216)(187,211)
(188,212)(189,213)(217,325)(218,326)(219,327)(220,331)(221,332)(222,333)
(223,328)(224,329)(225,330)(226,334)(227,335)(228,336)(229,340)(230,341)
(231,342)(232,337)(233,338)(234,339)(235,343)(236,344)(237,345)(238,349)
(239,350)(240,351)(241,346)(242,347)(243,348)(244,352)(245,353)(246,354)
(247,358)(248,359)(249,360)(250,355)(251,356)(252,357)(253,361)(254,362)
(255,363)(256,367)(257,368)(258,369)(259,364)(260,365)(261,366)(262,370)
(263,371)(264,372)(265,376)(266,377)(267,378)(268,373)(269,374)(270,375)
(271,379)(272,380)(273,381)(274,385)(275,386)(276,387)(277,382)(278,383)
(279,384)(280,388)(281,389)(282,390)(283,394)(284,395)(285,396)(286,391)
(287,392)(288,393)(289,397)(290,398)(291,399)(292,403)(293,404)(294,405)
(295,400)(296,401)(297,402)(298,406)(299,407)(300,408)(301,412)(302,413)
(303,414)(304,409)(305,410)(306,411)(307,415)(308,416)(309,417)(310,421)
(311,422)(312,423)(313,418)(314,419)(315,420)(316,424)(317,425)(318,426)
(319,430)(320,431)(321,432)(322,427)(323,428)(324,429);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!(  2,  3)(  4,  7)(  5,  9)(  6,  8)( 10, 21)( 11, 20)( 12, 19)
( 13, 27)( 14, 26)( 15, 25)( 16, 24)( 17, 23)( 18, 22)( 29, 30)( 31, 34)
( 32, 36)( 33, 35)( 37, 48)( 38, 47)( 39, 46)( 40, 54)( 41, 53)( 42, 52)
( 43, 51)( 44, 50)( 45, 49)( 55, 82)( 56, 84)( 57, 83)( 58, 88)( 59, 90)
( 60, 89)( 61, 85)( 62, 87)( 63, 86)( 64,102)( 65,101)( 66,100)( 67,108)
( 68,107)( 69,106)( 70,105)( 71,104)( 72,103)( 73, 93)( 74, 92)( 75, 91)
( 76, 99)( 77, 98)( 78, 97)( 79, 96)( 80, 95)( 81, 94)(109,136)(110,138)
(111,137)(112,142)(113,144)(114,143)(115,139)(116,141)(117,140)(118,156)
(119,155)(120,154)(121,162)(122,161)(123,160)(124,159)(125,158)(126,157)
(127,147)(128,146)(129,145)(130,153)(131,152)(132,151)(133,150)(134,149)
(135,148)(164,165)(166,169)(167,171)(168,170)(172,183)(173,182)(174,181)
(175,189)(176,188)(177,187)(178,186)(179,185)(180,184)(191,192)(193,196)
(194,198)(195,197)(199,210)(200,209)(201,208)(202,216)(203,215)(204,214)
(205,213)(206,212)(207,211)(217,379)(218,381)(219,380)(220,385)(221,387)
(222,386)(223,382)(224,384)(225,383)(226,399)(227,398)(228,397)(229,405)
(230,404)(231,403)(232,402)(233,401)(234,400)(235,390)(236,389)(237,388)
(238,396)(239,395)(240,394)(241,393)(242,392)(243,391)(244,406)(245,408)
(246,407)(247,412)(248,414)(249,413)(250,409)(251,411)(252,410)(253,426)
(254,425)(255,424)(256,432)(257,431)(258,430)(259,429)(260,428)(261,427)
(262,417)(263,416)(264,415)(265,423)(266,422)(267,421)(268,420)(269,419)
(270,418)(271,325)(272,327)(273,326)(274,331)(275,333)(276,332)(277,328)
(278,330)(279,329)(280,345)(281,344)(282,343)(283,351)(284,350)(285,349)
(286,348)(287,347)(288,346)(289,336)(290,335)(291,334)(292,342)(293,341)
(294,340)(295,339)(296,338)(297,337)(298,352)(299,354)(300,353)(301,358)
(302,360)(303,359)(304,355)(305,357)(306,356)(307,372)(308,371)(309,370)
(310,378)(311,377)(312,376)(313,375)(314,374)(315,373)(316,363)(317,362)
(318,361)(319,369)(320,368)(321,367)(322,366)(323,365)(324,364);
s1 := Sym(432)!(  1,229)(  2,231)(  3,230)(  4,226)(  5,228)(  6,227)(  7,232)
(  8,234)(  9,233)( 10,220)( 11,222)( 12,221)( 13,217)( 14,219)( 15,218)
( 16,223)( 17,225)( 18,224)( 19,240)( 20,239)( 21,238)( 22,237)( 23,236)
( 24,235)( 25,243)( 26,242)( 27,241)( 28,256)( 29,258)( 30,257)( 31,253)
( 32,255)( 33,254)( 34,259)( 35,261)( 36,260)( 37,247)( 38,249)( 39,248)
( 40,244)( 41,246)( 42,245)( 43,250)( 44,252)( 45,251)( 46,267)( 47,266)
( 48,265)( 49,264)( 50,263)( 51,262)( 52,270)( 53,269)( 54,268)( 55,310)
( 56,312)( 57,311)( 58,307)( 59,309)( 60,308)( 61,313)( 62,315)( 63,314)
( 64,301)( 65,303)( 66,302)( 67,298)( 68,300)( 69,299)( 70,304)( 71,306)
( 72,305)( 73,321)( 74,320)( 75,319)( 76,318)( 77,317)( 78,316)( 79,324)
( 80,323)( 81,322)( 82,283)( 83,285)( 84,284)( 85,280)( 86,282)( 87,281)
( 88,286)( 89,288)( 90,287)( 91,274)( 92,276)( 93,275)( 94,271)( 95,273)
( 96,272)( 97,277)( 98,279)( 99,278)(100,294)(101,293)(102,292)(103,291)
(104,290)(105,289)(106,297)(107,296)(108,295)(109,364)(110,366)(111,365)
(112,361)(113,363)(114,362)(115,367)(116,369)(117,368)(118,355)(119,357)
(120,356)(121,352)(122,354)(123,353)(124,358)(125,360)(126,359)(127,375)
(128,374)(129,373)(130,372)(131,371)(132,370)(133,378)(134,377)(135,376)
(136,337)(137,339)(138,338)(139,334)(140,336)(141,335)(142,340)(143,342)
(144,341)(145,328)(146,330)(147,329)(148,325)(149,327)(150,326)(151,331)
(152,333)(153,332)(154,348)(155,347)(156,346)(157,345)(158,344)(159,343)
(160,351)(161,350)(162,349)(163,391)(164,393)(165,392)(166,388)(167,390)
(168,389)(169,394)(170,396)(171,395)(172,382)(173,384)(174,383)(175,379)
(176,381)(177,380)(178,385)(179,387)(180,386)(181,402)(182,401)(183,400)
(184,399)(185,398)(186,397)(187,405)(188,404)(189,403)(190,418)(191,420)
(192,419)(193,415)(194,417)(195,416)(196,421)(197,423)(198,422)(199,409)
(200,411)(201,410)(202,406)(203,408)(204,407)(205,412)(206,414)(207,413)
(208,429)(209,428)(210,427)(211,426)(212,425)(213,424)(214,432)(215,431)
(216,430);
s2 := Sym(432)!(  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)
( 69, 72)( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)
( 95, 98)( 96, 99)(103,106)(104,107)(105,108)(109,136)(110,137)(111,138)
(112,142)(113,143)(114,144)(115,139)(116,140)(117,141)(118,145)(119,146)
(120,147)(121,151)(122,152)(123,153)(124,148)(125,149)(126,150)(127,154)
(128,155)(129,156)(130,160)(131,161)(132,162)(133,157)(134,158)(135,159)
(163,190)(164,191)(165,192)(166,196)(167,197)(168,198)(169,193)(170,194)
(171,195)(172,199)(173,200)(174,201)(175,205)(176,206)(177,207)(178,202)
(179,203)(180,204)(181,208)(182,209)(183,210)(184,214)(185,215)(186,216)
(187,211)(188,212)(189,213)(217,325)(218,326)(219,327)(220,331)(221,332)
(222,333)(223,328)(224,329)(225,330)(226,334)(227,335)(228,336)(229,340)
(230,341)(231,342)(232,337)(233,338)(234,339)(235,343)(236,344)(237,345)
(238,349)(239,350)(240,351)(241,346)(242,347)(243,348)(244,352)(245,353)
(246,354)(247,358)(248,359)(249,360)(250,355)(251,356)(252,357)(253,361)
(254,362)(255,363)(256,367)(257,368)(258,369)(259,364)(260,365)(261,366)
(262,370)(263,371)(264,372)(265,376)(266,377)(267,378)(268,373)(269,374)
(270,375)(271,379)(272,380)(273,381)(274,385)(275,386)(276,387)(277,382)
(278,383)(279,384)(280,388)(281,389)(282,390)(283,394)(284,395)(285,396)
(286,391)(287,392)(288,393)(289,397)(290,398)(291,399)(292,403)(293,404)
(294,405)(295,400)(296,401)(297,402)(298,406)(299,407)(300,408)(301,412)
(302,413)(303,414)(304,409)(305,410)(306,411)(307,415)(308,416)(309,417)
(310,421)(311,422)(312,423)(313,418)(314,419)(315,420)(316,424)(317,425)
(318,426)(319,430)(320,431)(321,432)(322,427)(323,428)(324,429);
poly := sub<Sym(432)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope