Polytope of Type {3,6,4,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,4,12}*1728
if this polytope has a name.
Group : SmallGroup(1728,37587)
Rank : 5
Schlafli Type : {3,6,4,12}
Number of vertices, edges, etc : 3, 9, 12, 24, 12
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,6,2,12}*864, {3,6,4,6}*864
   3-fold quotients : {3,2,4,12}*576a, {3,6,4,4}*576
   4-fold quotients : {3,6,2,6}*432
   6-fold quotients : {3,2,2,12}*288, {3,2,4,6}*288a, {3,6,2,4}*288, {3,6,4,2}*288
   8-fold quotients : {3,6,2,3}*216
   9-fold quotients : {3,2,4,4}*192
   12-fold quotients : {3,2,2,6}*144, {3,6,2,2}*144
   18-fold quotients : {3,2,2,4}*96, {3,2,4,2}*96
   24-fold quotients : {3,2,2,3}*72
   36-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  4,  7)(  5,  8)(  6,  9)( 10, 19)( 11, 20)( 12, 21)( 13, 25)( 14, 26)
( 15, 27)( 16, 22)( 17, 23)( 18, 24)( 31, 34)( 32, 35)( 33, 36)( 37, 46)
( 38, 47)( 39, 48)( 40, 52)( 41, 53)( 42, 54)( 43, 49)( 44, 50)( 45, 51)
( 58, 61)( 59, 62)( 60, 63)( 64, 73)( 65, 74)( 66, 75)( 67, 79)( 68, 80)
( 69, 81)( 70, 76)( 71, 77)( 72, 78)( 85, 88)( 86, 89)( 87, 90)( 91,100)
( 92,101)( 93,102)( 94,106)( 95,107)( 96,108)( 97,103)( 98,104)( 99,105)
(112,115)(113,116)(114,117)(118,127)(119,128)(120,129)(121,133)(122,134)
(123,135)(124,130)(125,131)(126,132)(139,142)(140,143)(141,144)(145,154)
(146,155)(147,156)(148,160)(149,161)(150,162)(151,157)(152,158)(153,159)
(166,169)(167,170)(168,171)(172,181)(173,182)(174,183)(175,187)(176,188)
(177,189)(178,184)(179,185)(180,186)(193,196)(194,197)(195,198)(199,208)
(200,209)(201,210)(202,214)(203,215)(204,216)(205,211)(206,212)(207,213);;
s1 := (  1, 13)(  2, 14)(  3, 15)(  4, 10)(  5, 11)(  6, 12)(  7, 16)(  8, 17)
(  9, 18)( 19, 22)( 20, 23)( 21, 24)( 28, 40)( 29, 41)( 30, 42)( 31, 37)
( 32, 38)( 33, 39)( 34, 43)( 35, 44)( 36, 45)( 46, 49)( 47, 50)( 48, 51)
( 55, 67)( 56, 68)( 57, 69)( 58, 64)( 59, 65)( 60, 66)( 61, 70)( 62, 71)
( 63, 72)( 73, 76)( 74, 77)( 75, 78)( 82, 94)( 83, 95)( 84, 96)( 85, 91)
( 86, 92)( 87, 93)( 88, 97)( 89, 98)( 90, 99)(100,103)(101,104)(102,105)
(109,121)(110,122)(111,123)(112,118)(113,119)(114,120)(115,124)(116,125)
(117,126)(127,130)(128,131)(129,132)(136,148)(137,149)(138,150)(139,145)
(140,146)(141,147)(142,151)(143,152)(144,153)(154,157)(155,158)(156,159)
(163,175)(164,176)(165,177)(166,172)(167,173)(168,174)(169,178)(170,179)
(171,180)(181,184)(182,185)(183,186)(190,202)(191,203)(192,204)(193,199)
(194,200)(195,201)(196,205)(197,206)(198,207)(208,211)(209,212)(210,213);;
s2 := (  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)( 69, 72)
( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)( 95, 98)
( 96, 99)(103,106)(104,107)(105,108)(109,136)(110,137)(111,138)(112,142)
(113,143)(114,144)(115,139)(116,140)(117,141)(118,145)(119,146)(120,147)
(121,151)(122,152)(123,153)(124,148)(125,149)(126,150)(127,154)(128,155)
(129,156)(130,160)(131,161)(132,162)(133,157)(134,158)(135,159)(163,190)
(164,191)(165,192)(166,196)(167,197)(168,198)(169,193)(170,194)(171,195)
(172,199)(173,200)(174,201)(175,205)(176,206)(177,207)(178,202)(179,203)
(180,204)(181,208)(182,209)(183,210)(184,214)(185,215)(186,216)(187,211)
(188,212)(189,213);;
s3 := (  1,109)(  2,111)(  3,110)(  4,112)(  5,114)(  6,113)(  7,115)(  8,117)
(  9,116)( 10,118)( 11,120)( 12,119)( 13,121)( 14,123)( 15,122)( 16,124)
( 17,126)( 18,125)( 19,127)( 20,129)( 21,128)( 22,130)( 23,132)( 24,131)
( 25,133)( 26,135)( 27,134)( 28,136)( 29,138)( 30,137)( 31,139)( 32,141)
( 33,140)( 34,142)( 35,144)( 36,143)( 37,145)( 38,147)( 39,146)( 40,148)
( 41,150)( 42,149)( 43,151)( 44,153)( 45,152)( 46,154)( 47,156)( 48,155)
( 49,157)( 50,159)( 51,158)( 52,160)( 53,162)( 54,161)( 55,163)( 56,165)
( 57,164)( 58,166)( 59,168)( 60,167)( 61,169)( 62,171)( 63,170)( 64,172)
( 65,174)( 66,173)( 67,175)( 68,177)( 69,176)( 70,178)( 71,180)( 72,179)
( 73,181)( 74,183)( 75,182)( 76,184)( 77,186)( 78,185)( 79,187)( 80,189)
( 81,188)( 82,190)( 83,192)( 84,191)( 85,193)( 86,195)( 87,194)( 88,196)
( 89,198)( 90,197)( 91,199)( 92,201)( 93,200)( 94,202)( 95,204)( 96,203)
( 97,205)( 98,207)( 99,206)(100,208)(101,210)(102,209)(103,211)(104,213)
(105,212)(106,214)(107,216)(108,215);;
s4 := (  1,  2)(  4,  5)(  7,  8)( 10, 11)( 13, 14)( 16, 17)( 19, 20)( 22, 23)
( 25, 26)( 28, 29)( 31, 32)( 34, 35)( 37, 38)( 40, 41)( 43, 44)( 46, 47)
( 49, 50)( 52, 53)( 55, 56)( 58, 59)( 61, 62)( 64, 65)( 67, 68)( 70, 71)
( 73, 74)( 76, 77)( 79, 80)( 82, 83)( 85, 86)( 88, 89)( 91, 92)( 94, 95)
( 97, 98)(100,101)(103,104)(106,107)(109,164)(110,163)(111,165)(112,167)
(113,166)(114,168)(115,170)(116,169)(117,171)(118,173)(119,172)(120,174)
(121,176)(122,175)(123,177)(124,179)(125,178)(126,180)(127,182)(128,181)
(129,183)(130,185)(131,184)(132,186)(133,188)(134,187)(135,189)(136,191)
(137,190)(138,192)(139,194)(140,193)(141,195)(142,197)(143,196)(144,198)
(145,200)(146,199)(147,201)(148,203)(149,202)(150,204)(151,206)(152,205)
(153,207)(154,209)(155,208)(156,210)(157,212)(158,211)(159,213)(160,215)
(161,214)(162,216);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(216)!(  4,  7)(  5,  8)(  6,  9)( 10, 19)( 11, 20)( 12, 21)( 13, 25)
( 14, 26)( 15, 27)( 16, 22)( 17, 23)( 18, 24)( 31, 34)( 32, 35)( 33, 36)
( 37, 46)( 38, 47)( 39, 48)( 40, 52)( 41, 53)( 42, 54)( 43, 49)( 44, 50)
( 45, 51)( 58, 61)( 59, 62)( 60, 63)( 64, 73)( 65, 74)( 66, 75)( 67, 79)
( 68, 80)( 69, 81)( 70, 76)( 71, 77)( 72, 78)( 85, 88)( 86, 89)( 87, 90)
( 91,100)( 92,101)( 93,102)( 94,106)( 95,107)( 96,108)( 97,103)( 98,104)
( 99,105)(112,115)(113,116)(114,117)(118,127)(119,128)(120,129)(121,133)
(122,134)(123,135)(124,130)(125,131)(126,132)(139,142)(140,143)(141,144)
(145,154)(146,155)(147,156)(148,160)(149,161)(150,162)(151,157)(152,158)
(153,159)(166,169)(167,170)(168,171)(172,181)(173,182)(174,183)(175,187)
(176,188)(177,189)(178,184)(179,185)(180,186)(193,196)(194,197)(195,198)
(199,208)(200,209)(201,210)(202,214)(203,215)(204,216)(205,211)(206,212)
(207,213);
s1 := Sym(216)!(  1, 13)(  2, 14)(  3, 15)(  4, 10)(  5, 11)(  6, 12)(  7, 16)
(  8, 17)(  9, 18)( 19, 22)( 20, 23)( 21, 24)( 28, 40)( 29, 41)( 30, 42)
( 31, 37)( 32, 38)( 33, 39)( 34, 43)( 35, 44)( 36, 45)( 46, 49)( 47, 50)
( 48, 51)( 55, 67)( 56, 68)( 57, 69)( 58, 64)( 59, 65)( 60, 66)( 61, 70)
( 62, 71)( 63, 72)( 73, 76)( 74, 77)( 75, 78)( 82, 94)( 83, 95)( 84, 96)
( 85, 91)( 86, 92)( 87, 93)( 88, 97)( 89, 98)( 90, 99)(100,103)(101,104)
(102,105)(109,121)(110,122)(111,123)(112,118)(113,119)(114,120)(115,124)
(116,125)(117,126)(127,130)(128,131)(129,132)(136,148)(137,149)(138,150)
(139,145)(140,146)(141,147)(142,151)(143,152)(144,153)(154,157)(155,158)
(156,159)(163,175)(164,176)(165,177)(166,172)(167,173)(168,174)(169,178)
(170,179)(171,180)(181,184)(182,185)(183,186)(190,202)(191,203)(192,204)
(193,199)(194,200)(195,201)(196,205)(197,206)(198,207)(208,211)(209,212)
(210,213);
s2 := Sym(216)!(  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)
( 69, 72)( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)
( 95, 98)( 96, 99)(103,106)(104,107)(105,108)(109,136)(110,137)(111,138)
(112,142)(113,143)(114,144)(115,139)(116,140)(117,141)(118,145)(119,146)
(120,147)(121,151)(122,152)(123,153)(124,148)(125,149)(126,150)(127,154)
(128,155)(129,156)(130,160)(131,161)(132,162)(133,157)(134,158)(135,159)
(163,190)(164,191)(165,192)(166,196)(167,197)(168,198)(169,193)(170,194)
(171,195)(172,199)(173,200)(174,201)(175,205)(176,206)(177,207)(178,202)
(179,203)(180,204)(181,208)(182,209)(183,210)(184,214)(185,215)(186,216)
(187,211)(188,212)(189,213);
s3 := Sym(216)!(  1,109)(  2,111)(  3,110)(  4,112)(  5,114)(  6,113)(  7,115)
(  8,117)(  9,116)( 10,118)( 11,120)( 12,119)( 13,121)( 14,123)( 15,122)
( 16,124)( 17,126)( 18,125)( 19,127)( 20,129)( 21,128)( 22,130)( 23,132)
( 24,131)( 25,133)( 26,135)( 27,134)( 28,136)( 29,138)( 30,137)( 31,139)
( 32,141)( 33,140)( 34,142)( 35,144)( 36,143)( 37,145)( 38,147)( 39,146)
( 40,148)( 41,150)( 42,149)( 43,151)( 44,153)( 45,152)( 46,154)( 47,156)
( 48,155)( 49,157)( 50,159)( 51,158)( 52,160)( 53,162)( 54,161)( 55,163)
( 56,165)( 57,164)( 58,166)( 59,168)( 60,167)( 61,169)( 62,171)( 63,170)
( 64,172)( 65,174)( 66,173)( 67,175)( 68,177)( 69,176)( 70,178)( 71,180)
( 72,179)( 73,181)( 74,183)( 75,182)( 76,184)( 77,186)( 78,185)( 79,187)
( 80,189)( 81,188)( 82,190)( 83,192)( 84,191)( 85,193)( 86,195)( 87,194)
( 88,196)( 89,198)( 90,197)( 91,199)( 92,201)( 93,200)( 94,202)( 95,204)
( 96,203)( 97,205)( 98,207)( 99,206)(100,208)(101,210)(102,209)(103,211)
(104,213)(105,212)(106,214)(107,216)(108,215);
s4 := Sym(216)!(  1,  2)(  4,  5)(  7,  8)( 10, 11)( 13, 14)( 16, 17)( 19, 20)
( 22, 23)( 25, 26)( 28, 29)( 31, 32)( 34, 35)( 37, 38)( 40, 41)( 43, 44)
( 46, 47)( 49, 50)( 52, 53)( 55, 56)( 58, 59)( 61, 62)( 64, 65)( 67, 68)
( 70, 71)( 73, 74)( 76, 77)( 79, 80)( 82, 83)( 85, 86)( 88, 89)( 91, 92)
( 94, 95)( 97, 98)(100,101)(103,104)(106,107)(109,164)(110,163)(111,165)
(112,167)(113,166)(114,168)(115,170)(116,169)(117,171)(118,173)(119,172)
(120,174)(121,176)(122,175)(123,177)(124,179)(125,178)(126,180)(127,182)
(128,181)(129,183)(130,185)(131,184)(132,186)(133,188)(134,187)(135,189)
(136,191)(137,190)(138,192)(139,194)(140,193)(141,195)(142,197)(143,196)
(144,198)(145,200)(146,199)(147,201)(148,203)(149,202)(150,204)(151,206)
(152,205)(153,207)(154,209)(155,208)(156,210)(157,212)(158,211)(159,213)
(160,215)(161,214)(162,216);
poly := sub<Sym(216)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 
References : None.
to this polytope