include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,8,6,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,8,6,3}*1728
if this polytope has a name.
Group : SmallGroup(1728,37593)
Rank : 6
Schlafli Type : {3,2,8,6,3}
Number of vertices, edges, etc : 3, 3, 8, 24, 9, 3
Order of s0s1s2s3s4s5 : 24
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,4,6,3}*864
3-fold quotients : {3,2,8,2,3}*576
4-fold quotients : {3,2,2,6,3}*432
6-fold quotients : {3,2,4,2,3}*288
12-fold quotients : {3,2,2,2,3}*144
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)(10,46)(11,47)(12,48)(13,49)
(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,67)(23,68)(24,69)
(25,70)(26,71)(27,72)(28,73)(29,74)(30,75)(31,58)(32,59)(33,60)(34,61)(35,62)
(36,63)(37,64)(38,65)(39,66);;
s3 := ( 7,10)( 8,11)( 9,12)(16,19)(17,20)(18,21)(22,31)(23,32)(24,33)(25,37)
(26,38)(27,39)(28,34)(29,35)(30,36)(40,58)(41,59)(42,60)(43,64)(44,65)(45,66)
(46,61)(47,62)(48,63)(49,67)(50,68)(51,69)(52,73)(53,74)(54,75)(55,70)(56,71)
(57,72);;
s4 := ( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)(22,25)(23,27)
(24,26)(29,30)(31,34)(32,36)(33,35)(38,39)(40,43)(41,45)(42,44)(47,48)(49,52)
(50,54)(51,53)(56,57)(58,61)(59,63)(60,62)(65,66)(67,70)(68,72)(69,71)
(74,75);;
s5 := ( 4, 5)( 7,11)( 8,10)( 9,12)(13,14)(16,20)(17,19)(18,21)(22,23)(25,29)
(26,28)(27,30)(31,32)(34,38)(35,37)(36,39)(40,41)(43,47)(44,46)(45,48)(49,50)
(52,56)(53,55)(54,57)(58,59)(61,65)(62,64)(63,66)(67,68)(70,74)(71,73)
(72,75);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s0*s1*s0*s1*s0*s1,
s4*s5*s4*s5*s4*s5, s2*s3*s4*s3*s2*s3*s4*s3,
s5*s3*s4*s3*s4*s5*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(75)!(2,3);
s1 := Sym(75)!(1,2);
s2 := Sym(75)!( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)(10,46)(11,47)(12,48)
(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,67)(23,68)
(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,75)(31,58)(32,59)(33,60)(34,61)
(35,62)(36,63)(37,64)(38,65)(39,66);
s3 := Sym(75)!( 7,10)( 8,11)( 9,12)(16,19)(17,20)(18,21)(22,31)(23,32)(24,33)
(25,37)(26,38)(27,39)(28,34)(29,35)(30,36)(40,58)(41,59)(42,60)(43,64)(44,65)
(45,66)(46,61)(47,62)(48,63)(49,67)(50,68)(51,69)(52,73)(53,74)(54,75)(55,70)
(56,71)(57,72);
s4 := Sym(75)!( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)(22,25)
(23,27)(24,26)(29,30)(31,34)(32,36)(33,35)(38,39)(40,43)(41,45)(42,44)(47,48)
(49,52)(50,54)(51,53)(56,57)(58,61)(59,63)(60,62)(65,66)(67,70)(68,72)(69,71)
(74,75);
s5 := Sym(75)!( 4, 5)( 7,11)( 8,10)( 9,12)(13,14)(16,20)(17,19)(18,21)(22,23)
(25,29)(26,28)(27,30)(31,32)(34,38)(35,37)(36,39)(40,41)(43,47)(44,46)(45,48)
(49,50)(52,56)(53,55)(54,57)(58,59)(61,65)(62,64)(63,66)(67,68)(70,74)(71,73)
(72,75);
poly := sub<Sym(75)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s0*s1*s0*s1*s0*s1, s4*s5*s4*s5*s4*s5,
s2*s3*s4*s3*s2*s3*s4*s3, s5*s3*s4*s3*s4*s5*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope