include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,9,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,9,6}*1728
if this polytope has a name.
Group : SmallGroup(1728,46098)
Rank : 4
Schlafli Type : {4,9,6}
Number of vertices, edges, etc : 4, 72, 108, 24
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {4,3,6}*576
4-fold quotients : {4,9,6}*432
12-fold quotients : {4,9,2}*144, {4,3,6}*144
36-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)
(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)
(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)
(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192)
(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)(206,208)
(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)(222,224)
(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)(238,240)
(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)(254,256)
(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)(270,272)
(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)(286,288)
(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)(302,304)
(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)(318,320)
(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)(334,336)
(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)(350,352)
(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)(366,368)
(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)(382,384)
(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)(398,400)
(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)(414,416)
(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)(430,432);;
s1 := ( 3, 4)( 7, 8)( 9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)( 26, 46)
( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 49, 97)( 50, 98)
( 51,100)( 52, 99)( 53,101)( 54,102)( 55,104)( 56,103)( 57,109)( 58,110)
( 59,112)( 60,111)( 61,105)( 62,106)( 63,108)( 64,107)( 65,129)( 66,130)
( 67,132)( 68,131)( 69,133)( 70,134)( 71,136)( 72,135)( 73,141)( 74,142)
( 75,144)( 76,143)( 77,137)( 78,138)( 79,140)( 80,139)( 81,113)( 82,114)
( 83,116)( 84,115)( 85,117)( 86,118)( 87,120)( 88,119)( 89,125)( 90,126)
( 91,128)( 92,127)( 93,121)( 94,122)( 95,124)( 96,123)(145,321)(146,322)
(147,324)(148,323)(149,325)(150,326)(151,328)(152,327)(153,333)(154,334)
(155,336)(156,335)(157,329)(158,330)(159,332)(160,331)(161,305)(162,306)
(163,308)(164,307)(165,309)(166,310)(167,312)(168,311)(169,317)(170,318)
(171,320)(172,319)(173,313)(174,314)(175,316)(176,315)(177,289)(178,290)
(179,292)(180,291)(181,293)(182,294)(183,296)(184,295)(185,301)(186,302)
(187,304)(188,303)(189,297)(190,298)(191,300)(192,299)(193,417)(194,418)
(195,420)(196,419)(197,421)(198,422)(199,424)(200,423)(201,429)(202,430)
(203,432)(204,431)(205,425)(206,426)(207,428)(208,427)(209,401)(210,402)
(211,404)(212,403)(213,405)(214,406)(215,408)(216,407)(217,413)(218,414)
(219,416)(220,415)(221,409)(222,410)(223,412)(224,411)(225,385)(226,386)
(227,388)(228,387)(229,389)(230,390)(231,392)(232,391)(233,397)(234,398)
(235,400)(236,399)(237,393)(238,394)(239,396)(240,395)(241,369)(242,370)
(243,372)(244,371)(245,373)(246,374)(247,376)(248,375)(249,381)(250,382)
(251,384)(252,383)(253,377)(254,378)(255,380)(256,379)(257,353)(258,354)
(259,356)(260,355)(261,357)(262,358)(263,360)(264,359)(265,365)(266,366)
(267,368)(268,367)(269,361)(270,362)(271,364)(272,363)(273,337)(274,338)
(275,340)(276,339)(277,341)(278,342)(279,344)(280,343)(281,349)(282,350)
(283,352)(284,351)(285,345)(286,346)(287,348)(288,347);;
s2 := ( 1,193)( 2,196)( 3,195)( 4,194)( 5,205)( 6,208)( 7,207)( 8,206)
( 9,201)( 10,204)( 11,203)( 12,202)( 13,197)( 14,200)( 15,199)( 16,198)
( 17,225)( 18,228)( 19,227)( 20,226)( 21,237)( 22,240)( 23,239)( 24,238)
( 25,233)( 26,236)( 27,235)( 28,234)( 29,229)( 30,232)( 31,231)( 32,230)
( 33,209)( 34,212)( 35,211)( 36,210)( 37,221)( 38,224)( 39,223)( 40,222)
( 41,217)( 42,220)( 43,219)( 44,218)( 45,213)( 46,216)( 47,215)( 48,214)
( 49,145)( 50,148)( 51,147)( 52,146)( 53,157)( 54,160)( 55,159)( 56,158)
( 57,153)( 58,156)( 59,155)( 60,154)( 61,149)( 62,152)( 63,151)( 64,150)
( 65,177)( 66,180)( 67,179)( 68,178)( 69,189)( 70,192)( 71,191)( 72,190)
( 73,185)( 74,188)( 75,187)( 76,186)( 77,181)( 78,184)( 79,183)( 80,182)
( 81,161)( 82,164)( 83,163)( 84,162)( 85,173)( 86,176)( 87,175)( 88,174)
( 89,169)( 90,172)( 91,171)( 92,170)( 93,165)( 94,168)( 95,167)( 96,166)
( 97,241)( 98,244)( 99,243)(100,242)(101,253)(102,256)(103,255)(104,254)
(105,249)(106,252)(107,251)(108,250)(109,245)(110,248)(111,247)(112,246)
(113,273)(114,276)(115,275)(116,274)(117,285)(118,288)(119,287)(120,286)
(121,281)(122,284)(123,283)(124,282)(125,277)(126,280)(127,279)(128,278)
(129,257)(130,260)(131,259)(132,258)(133,269)(134,272)(135,271)(136,270)
(137,265)(138,268)(139,267)(140,266)(141,261)(142,264)(143,263)(144,262)
(289,369)(290,372)(291,371)(292,370)(293,381)(294,384)(295,383)(296,382)
(297,377)(298,380)(299,379)(300,378)(301,373)(302,376)(303,375)(304,374)
(305,353)(306,356)(307,355)(308,354)(309,365)(310,368)(311,367)(312,366)
(313,361)(314,364)(315,363)(316,362)(317,357)(318,360)(319,359)(320,358)
(321,337)(322,340)(323,339)(324,338)(325,349)(326,352)(327,351)(328,350)
(329,345)(330,348)(331,347)(332,346)(333,341)(334,344)(335,343)(336,342)
(385,417)(386,420)(387,419)(388,418)(389,429)(390,432)(391,431)(392,430)
(393,425)(394,428)(395,427)(396,426)(397,421)(398,424)(399,423)(400,422)
(402,404)(405,413)(406,416)(407,415)(408,414)(410,412);;
s3 := ( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 17, 21)( 18, 22)( 19, 23)( 20, 24)
( 33, 37)( 34, 38)( 35, 39)( 36, 40)( 49,101)( 50,102)( 51,103)( 52,104)
( 53, 97)( 54, 98)( 55, 99)( 56,100)( 57,105)( 58,106)( 59,107)( 60,108)
( 61,109)( 62,110)( 63,111)( 64,112)( 65,117)( 66,118)( 67,119)( 68,120)
( 69,113)( 70,114)( 71,115)( 72,116)( 73,121)( 74,122)( 75,123)( 76,124)
( 77,125)( 78,126)( 79,127)( 80,128)( 81,133)( 82,134)( 83,135)( 84,136)
( 85,129)( 86,130)( 87,131)( 88,132)( 89,137)( 90,138)( 91,139)( 92,140)
( 93,141)( 94,142)( 95,143)( 96,144)(145,149)(146,150)(147,151)(148,152)
(161,165)(162,166)(163,167)(164,168)(177,181)(178,182)(179,183)(180,184)
(193,245)(194,246)(195,247)(196,248)(197,241)(198,242)(199,243)(200,244)
(201,249)(202,250)(203,251)(204,252)(205,253)(206,254)(207,255)(208,256)
(209,261)(210,262)(211,263)(212,264)(213,257)(214,258)(215,259)(216,260)
(217,265)(218,266)(219,267)(220,268)(221,269)(222,270)(223,271)(224,272)
(225,277)(226,278)(227,279)(228,280)(229,273)(230,274)(231,275)(232,276)
(233,281)(234,282)(235,283)(236,284)(237,285)(238,286)(239,287)(240,288)
(289,293)(290,294)(291,295)(292,296)(305,309)(306,310)(307,311)(308,312)
(321,325)(322,326)(323,327)(324,328)(337,389)(338,390)(339,391)(340,392)
(341,385)(342,386)(343,387)(344,388)(345,393)(346,394)(347,395)(348,396)
(349,397)(350,398)(351,399)(352,400)(353,405)(354,406)(355,407)(356,408)
(357,401)(358,402)(359,403)(360,404)(361,409)(362,410)(363,411)(364,412)
(365,413)(366,414)(367,415)(368,416)(369,421)(370,422)(371,423)(372,424)
(373,417)(374,418)(375,419)(376,420)(377,425)(378,426)(379,427)(380,428)
(381,429)(382,430)(383,431)(384,432);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(432)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)
(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)
(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)
(190,192)(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)
(206,208)(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)
(222,224)(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)
(238,240)(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)
(254,256)(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)
(270,272)(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)
(286,288)(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)
(302,304)(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)
(318,320)(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)
(334,336)(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)
(350,352)(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)
(366,368)(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)
(382,384)(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)
(398,400)(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)
(414,416)(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)
(430,432);
s1 := Sym(432)!( 3, 4)( 7, 8)( 9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)
( 26, 46)( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 49, 97)
( 50, 98)( 51,100)( 52, 99)( 53,101)( 54,102)( 55,104)( 56,103)( 57,109)
( 58,110)( 59,112)( 60,111)( 61,105)( 62,106)( 63,108)( 64,107)( 65,129)
( 66,130)( 67,132)( 68,131)( 69,133)( 70,134)( 71,136)( 72,135)( 73,141)
( 74,142)( 75,144)( 76,143)( 77,137)( 78,138)( 79,140)( 80,139)( 81,113)
( 82,114)( 83,116)( 84,115)( 85,117)( 86,118)( 87,120)( 88,119)( 89,125)
( 90,126)( 91,128)( 92,127)( 93,121)( 94,122)( 95,124)( 96,123)(145,321)
(146,322)(147,324)(148,323)(149,325)(150,326)(151,328)(152,327)(153,333)
(154,334)(155,336)(156,335)(157,329)(158,330)(159,332)(160,331)(161,305)
(162,306)(163,308)(164,307)(165,309)(166,310)(167,312)(168,311)(169,317)
(170,318)(171,320)(172,319)(173,313)(174,314)(175,316)(176,315)(177,289)
(178,290)(179,292)(180,291)(181,293)(182,294)(183,296)(184,295)(185,301)
(186,302)(187,304)(188,303)(189,297)(190,298)(191,300)(192,299)(193,417)
(194,418)(195,420)(196,419)(197,421)(198,422)(199,424)(200,423)(201,429)
(202,430)(203,432)(204,431)(205,425)(206,426)(207,428)(208,427)(209,401)
(210,402)(211,404)(212,403)(213,405)(214,406)(215,408)(216,407)(217,413)
(218,414)(219,416)(220,415)(221,409)(222,410)(223,412)(224,411)(225,385)
(226,386)(227,388)(228,387)(229,389)(230,390)(231,392)(232,391)(233,397)
(234,398)(235,400)(236,399)(237,393)(238,394)(239,396)(240,395)(241,369)
(242,370)(243,372)(244,371)(245,373)(246,374)(247,376)(248,375)(249,381)
(250,382)(251,384)(252,383)(253,377)(254,378)(255,380)(256,379)(257,353)
(258,354)(259,356)(260,355)(261,357)(262,358)(263,360)(264,359)(265,365)
(266,366)(267,368)(268,367)(269,361)(270,362)(271,364)(272,363)(273,337)
(274,338)(275,340)(276,339)(277,341)(278,342)(279,344)(280,343)(281,349)
(282,350)(283,352)(284,351)(285,345)(286,346)(287,348)(288,347);
s2 := Sym(432)!( 1,193)( 2,196)( 3,195)( 4,194)( 5,205)( 6,208)( 7,207)
( 8,206)( 9,201)( 10,204)( 11,203)( 12,202)( 13,197)( 14,200)( 15,199)
( 16,198)( 17,225)( 18,228)( 19,227)( 20,226)( 21,237)( 22,240)( 23,239)
( 24,238)( 25,233)( 26,236)( 27,235)( 28,234)( 29,229)( 30,232)( 31,231)
( 32,230)( 33,209)( 34,212)( 35,211)( 36,210)( 37,221)( 38,224)( 39,223)
( 40,222)( 41,217)( 42,220)( 43,219)( 44,218)( 45,213)( 46,216)( 47,215)
( 48,214)( 49,145)( 50,148)( 51,147)( 52,146)( 53,157)( 54,160)( 55,159)
( 56,158)( 57,153)( 58,156)( 59,155)( 60,154)( 61,149)( 62,152)( 63,151)
( 64,150)( 65,177)( 66,180)( 67,179)( 68,178)( 69,189)( 70,192)( 71,191)
( 72,190)( 73,185)( 74,188)( 75,187)( 76,186)( 77,181)( 78,184)( 79,183)
( 80,182)( 81,161)( 82,164)( 83,163)( 84,162)( 85,173)( 86,176)( 87,175)
( 88,174)( 89,169)( 90,172)( 91,171)( 92,170)( 93,165)( 94,168)( 95,167)
( 96,166)( 97,241)( 98,244)( 99,243)(100,242)(101,253)(102,256)(103,255)
(104,254)(105,249)(106,252)(107,251)(108,250)(109,245)(110,248)(111,247)
(112,246)(113,273)(114,276)(115,275)(116,274)(117,285)(118,288)(119,287)
(120,286)(121,281)(122,284)(123,283)(124,282)(125,277)(126,280)(127,279)
(128,278)(129,257)(130,260)(131,259)(132,258)(133,269)(134,272)(135,271)
(136,270)(137,265)(138,268)(139,267)(140,266)(141,261)(142,264)(143,263)
(144,262)(289,369)(290,372)(291,371)(292,370)(293,381)(294,384)(295,383)
(296,382)(297,377)(298,380)(299,379)(300,378)(301,373)(302,376)(303,375)
(304,374)(305,353)(306,356)(307,355)(308,354)(309,365)(310,368)(311,367)
(312,366)(313,361)(314,364)(315,363)(316,362)(317,357)(318,360)(319,359)
(320,358)(321,337)(322,340)(323,339)(324,338)(325,349)(326,352)(327,351)
(328,350)(329,345)(330,348)(331,347)(332,346)(333,341)(334,344)(335,343)
(336,342)(385,417)(386,420)(387,419)(388,418)(389,429)(390,432)(391,431)
(392,430)(393,425)(394,428)(395,427)(396,426)(397,421)(398,424)(399,423)
(400,422)(402,404)(405,413)(406,416)(407,415)(408,414)(410,412);
s3 := Sym(432)!( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 17, 21)( 18, 22)( 19, 23)
( 20, 24)( 33, 37)( 34, 38)( 35, 39)( 36, 40)( 49,101)( 50,102)( 51,103)
( 52,104)( 53, 97)( 54, 98)( 55, 99)( 56,100)( 57,105)( 58,106)( 59,107)
( 60,108)( 61,109)( 62,110)( 63,111)( 64,112)( 65,117)( 66,118)( 67,119)
( 68,120)( 69,113)( 70,114)( 71,115)( 72,116)( 73,121)( 74,122)( 75,123)
( 76,124)( 77,125)( 78,126)( 79,127)( 80,128)( 81,133)( 82,134)( 83,135)
( 84,136)( 85,129)( 86,130)( 87,131)( 88,132)( 89,137)( 90,138)( 91,139)
( 92,140)( 93,141)( 94,142)( 95,143)( 96,144)(145,149)(146,150)(147,151)
(148,152)(161,165)(162,166)(163,167)(164,168)(177,181)(178,182)(179,183)
(180,184)(193,245)(194,246)(195,247)(196,248)(197,241)(198,242)(199,243)
(200,244)(201,249)(202,250)(203,251)(204,252)(205,253)(206,254)(207,255)
(208,256)(209,261)(210,262)(211,263)(212,264)(213,257)(214,258)(215,259)
(216,260)(217,265)(218,266)(219,267)(220,268)(221,269)(222,270)(223,271)
(224,272)(225,277)(226,278)(227,279)(228,280)(229,273)(230,274)(231,275)
(232,276)(233,281)(234,282)(235,283)(236,284)(237,285)(238,286)(239,287)
(240,288)(289,293)(290,294)(291,295)(292,296)(305,309)(306,310)(307,311)
(308,312)(321,325)(322,326)(323,327)(324,328)(337,389)(338,390)(339,391)
(340,392)(341,385)(342,386)(343,387)(344,388)(345,393)(346,394)(347,395)
(348,396)(349,397)(350,398)(351,399)(352,400)(353,405)(354,406)(355,407)
(356,408)(357,401)(358,402)(359,403)(360,404)(361,409)(362,410)(363,411)
(364,412)(365,413)(366,414)(367,415)(368,416)(369,421)(370,422)(371,423)
(372,424)(373,417)(374,418)(375,419)(376,420)(377,425)(378,426)(379,427)
(380,428)(381,429)(382,430)(383,431)(384,432);
poly := sub<Sym(432)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2 >;
References : None.
to this polytope