Polytope of Type {9,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,6}*432
if this polytope has a name.
Group : SmallGroup(432,521)
Rank : 3
Schlafli Type : {9,6}
Number of vertices, edges, etc : 36, 108, 24
Order of s0s1s2 : 36
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {9,6,2} of size 864
   {9,6,4} of size 1728
Vertex Figure Of :
   {2,9,6} of size 864
   {4,9,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,6}*144
   4-fold quotients : {9,6}*108
   9-fold quotients : {3,6}*48
   12-fold quotients : {9,2}*36, {3,6}*36
   18-fold quotients : {3,3}*24
   36-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
   2-fold covers : {9,12}*864, {18,6}*864
   3-fold covers : {27,6}*1296, {9,18}*1296a, {9,6}*1296b
   4-fold covers : {9,6}*1728, {36,6}*1728a, {18,12}*1728a, {18,6}*1728a, {36,6}*1728c, {18,12}*1728b, {9,12}*1728
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(13,29)(14,31)(15,30)(16,32)(17,25)
(18,27)(19,26)(20,28)(21,33)(22,35)(23,34)(24,36);;
s1 := ( 1,13)( 2,14)( 3,16)( 4,15)( 5,21)( 6,22)( 7,24)( 8,23)( 9,17)(10,18)
(11,20)(12,19)(25,29)(26,30)(27,32)(28,31)(35,36);;
s2 := ( 1, 4)( 5, 8)( 9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(36)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(13,29)(14,31)(15,30)(16,32)
(17,25)(18,27)(19,26)(20,28)(21,33)(22,35)(23,34)(24,36);
s1 := Sym(36)!( 1,13)( 2,14)( 3,16)( 4,15)( 5,21)( 6,22)( 7,24)( 8,23)( 9,17)
(10,18)(11,20)(12,19)(25,29)(26,30)(27,32)(28,31)(35,36);
s2 := Sym(36)!( 1, 4)( 5, 8)( 9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36);
poly := sub<Sym(36)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 >; 
 
References : None.
to this polytope