Polytope of Type {6,36,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,36,4}*1728g
if this polytope has a name.
Group : SmallGroup(1728,46098)
Rank : 4
Schlafli Type : {6,36,4}
Number of vertices, edges, etc : 6, 108, 72, 4
Order of s0s1s2s3 : 9
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,12,4}*576h
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  9, 13)( 10, 14)( 11, 15)( 12, 16)( 25, 29)( 26, 30)( 27, 31)( 28, 32)
( 41, 45)( 42, 46)( 43, 47)( 44, 48)( 49, 97)( 50, 98)( 51, 99)( 52,100)
( 53,101)( 54,102)( 55,103)( 56,104)( 57,109)( 58,110)( 59,111)( 60,112)
( 61,105)( 62,106)( 63,107)( 64,108)( 65,113)( 66,114)( 67,115)( 68,116)
( 69,117)( 70,118)( 71,119)( 72,120)( 73,125)( 74,126)( 75,127)( 76,128)
( 77,121)( 78,122)( 79,123)( 80,124)( 81,129)( 82,130)( 83,131)( 84,132)
( 85,133)( 86,134)( 87,135)( 88,136)( 89,141)( 90,142)( 91,143)( 92,144)
( 93,137)( 94,138)( 95,139)( 96,140)(153,157)(154,158)(155,159)(156,160)
(169,173)(170,174)(171,175)(172,176)(185,189)(186,190)(187,191)(188,192)
(193,241)(194,242)(195,243)(196,244)(197,245)(198,246)(199,247)(200,248)
(201,253)(202,254)(203,255)(204,256)(205,249)(206,250)(207,251)(208,252)
(209,257)(210,258)(211,259)(212,260)(213,261)(214,262)(215,263)(216,264)
(217,269)(218,270)(219,271)(220,272)(221,265)(222,266)(223,267)(224,268)
(225,273)(226,274)(227,275)(228,276)(229,277)(230,278)(231,279)(232,280)
(233,285)(234,286)(235,287)(236,288)(237,281)(238,282)(239,283)(240,284)
(297,301)(298,302)(299,303)(300,304)(313,317)(314,318)(315,319)(316,320)
(329,333)(330,334)(331,335)(332,336)(337,385)(338,386)(339,387)(340,388)
(341,389)(342,390)(343,391)(344,392)(345,397)(346,398)(347,399)(348,400)
(349,393)(350,394)(351,395)(352,396)(353,401)(354,402)(355,403)(356,404)
(357,405)(358,406)(359,407)(360,408)(361,413)(362,414)(363,415)(364,416)
(365,409)(366,410)(367,411)(368,412)(369,417)(370,418)(371,419)(372,420)
(373,421)(374,422)(375,423)(376,424)(377,429)(378,430)(379,431)(380,432)
(381,425)(382,426)(383,427)(384,428);;
s1 := (  1, 49)(  2, 50)(  3, 52)(  4, 51)(  5, 61)(  6, 62)(  7, 64)(  8, 63)
(  9, 57)( 10, 58)( 11, 60)( 12, 59)( 13, 53)( 14, 54)( 15, 56)( 16, 55)
( 17, 81)( 18, 82)( 19, 84)( 20, 83)( 21, 93)( 22, 94)( 23, 96)( 24, 95)
( 25, 89)( 26, 90)( 27, 92)( 28, 91)( 29, 85)( 30, 86)( 31, 88)( 32, 87)
( 33, 65)( 34, 66)( 35, 68)( 36, 67)( 37, 77)( 38, 78)( 39, 80)( 40, 79)
( 41, 73)( 42, 74)( 43, 76)( 44, 75)( 45, 69)( 46, 70)( 47, 72)( 48, 71)
( 99,100)(101,109)(102,110)(103,112)(104,111)(107,108)(113,129)(114,130)
(115,132)(116,131)(117,141)(118,142)(119,144)(120,143)(121,137)(122,138)
(123,140)(124,139)(125,133)(126,134)(127,136)(128,135)(145,369)(146,370)
(147,372)(148,371)(149,381)(150,382)(151,384)(152,383)(153,377)(154,378)
(155,380)(156,379)(157,373)(158,374)(159,376)(160,375)(161,353)(162,354)
(163,356)(164,355)(165,365)(166,366)(167,368)(168,367)(169,361)(170,362)
(171,364)(172,363)(173,357)(174,358)(175,360)(176,359)(177,337)(178,338)
(179,340)(180,339)(181,349)(182,350)(183,352)(184,351)(185,345)(186,346)
(187,348)(188,347)(189,341)(190,342)(191,344)(192,343)(193,321)(194,322)
(195,324)(196,323)(197,333)(198,334)(199,336)(200,335)(201,329)(202,330)
(203,332)(204,331)(205,325)(206,326)(207,328)(208,327)(209,305)(210,306)
(211,308)(212,307)(213,317)(214,318)(215,320)(216,319)(217,313)(218,314)
(219,316)(220,315)(221,309)(222,310)(223,312)(224,311)(225,289)(226,290)
(227,292)(228,291)(229,301)(230,302)(231,304)(232,303)(233,297)(234,298)
(235,300)(236,299)(237,293)(238,294)(239,296)(240,295)(241,417)(242,418)
(243,420)(244,419)(245,429)(246,430)(247,432)(248,431)(249,425)(250,426)
(251,428)(252,427)(253,421)(254,422)(255,424)(256,423)(257,401)(258,402)
(259,404)(260,403)(261,413)(262,414)(263,416)(264,415)(265,409)(266,410)
(267,412)(268,411)(269,405)(270,406)(271,408)(272,407)(273,385)(274,386)
(275,388)(276,387)(277,397)(278,398)(279,400)(280,399)(281,393)(282,394)
(283,396)(284,395)(285,389)(286,390)(287,392)(288,391);;
s2 := (  1,149)(  2,152)(  3,151)(  4,150)(  5,145)(  6,148)(  7,147)(  8,146)
(  9,157)( 10,160)( 11,159)( 12,158)( 13,153)( 14,156)( 15,155)( 16,154)
( 17,181)( 18,184)( 19,183)( 20,182)( 21,177)( 22,180)( 23,179)( 24,178)
( 25,189)( 26,192)( 27,191)( 28,190)( 29,185)( 30,188)( 31,187)( 32,186)
( 33,165)( 34,168)( 35,167)( 36,166)( 37,161)( 38,164)( 39,163)( 40,162)
( 41,173)( 42,176)( 43,175)( 44,174)( 45,169)( 46,172)( 47,171)( 48,170)
( 49,197)( 50,200)( 51,199)( 52,198)( 53,193)( 54,196)( 55,195)( 56,194)
( 57,205)( 58,208)( 59,207)( 60,206)( 61,201)( 62,204)( 63,203)( 64,202)
( 65,229)( 66,232)( 67,231)( 68,230)( 69,225)( 70,228)( 71,227)( 72,226)
( 73,237)( 74,240)( 75,239)( 76,238)( 77,233)( 78,236)( 79,235)( 80,234)
( 81,213)( 82,216)( 83,215)( 84,214)( 85,209)( 86,212)( 87,211)( 88,210)
( 89,221)( 90,224)( 91,223)( 92,222)( 93,217)( 94,220)( 95,219)( 96,218)
( 97,245)( 98,248)( 99,247)(100,246)(101,241)(102,244)(103,243)(104,242)
(105,253)(106,256)(107,255)(108,254)(109,249)(110,252)(111,251)(112,250)
(113,277)(114,280)(115,279)(116,278)(117,273)(118,276)(119,275)(120,274)
(121,285)(122,288)(123,287)(124,286)(125,281)(126,284)(127,283)(128,282)
(129,261)(130,264)(131,263)(132,262)(133,257)(134,260)(135,259)(136,258)
(137,269)(138,272)(139,271)(140,270)(141,265)(142,268)(143,267)(144,266)
(289,325)(290,328)(291,327)(292,326)(293,321)(294,324)(295,323)(296,322)
(297,333)(298,336)(299,335)(300,334)(301,329)(302,332)(303,331)(304,330)
(305,309)(306,312)(307,311)(308,310)(313,317)(314,320)(315,319)(316,318)
(337,373)(338,376)(339,375)(340,374)(341,369)(342,372)(343,371)(344,370)
(345,381)(346,384)(347,383)(348,382)(349,377)(350,380)(351,379)(352,378)
(353,357)(354,360)(355,359)(356,358)(361,365)(362,368)(363,367)(364,366)
(385,421)(386,424)(387,423)(388,422)(389,417)(390,420)(391,419)(392,418)
(393,429)(394,432)(395,431)(396,430)(397,425)(398,428)(399,427)(400,426)
(401,405)(402,408)(403,407)(404,406)(409,413)(410,416)(411,415)(412,414);;
s3 := (  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)
(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)
(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)
(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)
(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)
(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)(223,224)
(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)(239,240)
(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)(255,256)
(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)(271,272)
(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)(287,288)
(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,302)(303,304)
(305,306)(307,308)(309,310)(311,312)(313,314)(315,316)(317,318)(319,320)
(321,322)(323,324)(325,326)(327,328)(329,330)(331,332)(333,334)(335,336)
(337,338)(339,340)(341,342)(343,344)(345,346)(347,348)(349,350)(351,352)
(353,354)(355,356)(357,358)(359,360)(361,362)(363,364)(365,366)(367,368)
(369,370)(371,372)(373,374)(375,376)(377,378)(379,380)(381,382)(383,384)
(385,386)(387,388)(389,390)(391,392)(393,394)(395,396)(397,398)(399,400)
(401,402)(403,404)(405,406)(407,408)(409,410)(411,412)(413,414)(415,416)
(417,418)(419,420)(421,422)(423,424)(425,426)(427,428)(429,430)(431,432);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s2*s1*s3*s2*s3*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!(  9, 13)( 10, 14)( 11, 15)( 12, 16)( 25, 29)( 26, 30)( 27, 31)
( 28, 32)( 41, 45)( 42, 46)( 43, 47)( 44, 48)( 49, 97)( 50, 98)( 51, 99)
( 52,100)( 53,101)( 54,102)( 55,103)( 56,104)( 57,109)( 58,110)( 59,111)
( 60,112)( 61,105)( 62,106)( 63,107)( 64,108)( 65,113)( 66,114)( 67,115)
( 68,116)( 69,117)( 70,118)( 71,119)( 72,120)( 73,125)( 74,126)( 75,127)
( 76,128)( 77,121)( 78,122)( 79,123)( 80,124)( 81,129)( 82,130)( 83,131)
( 84,132)( 85,133)( 86,134)( 87,135)( 88,136)( 89,141)( 90,142)( 91,143)
( 92,144)( 93,137)( 94,138)( 95,139)( 96,140)(153,157)(154,158)(155,159)
(156,160)(169,173)(170,174)(171,175)(172,176)(185,189)(186,190)(187,191)
(188,192)(193,241)(194,242)(195,243)(196,244)(197,245)(198,246)(199,247)
(200,248)(201,253)(202,254)(203,255)(204,256)(205,249)(206,250)(207,251)
(208,252)(209,257)(210,258)(211,259)(212,260)(213,261)(214,262)(215,263)
(216,264)(217,269)(218,270)(219,271)(220,272)(221,265)(222,266)(223,267)
(224,268)(225,273)(226,274)(227,275)(228,276)(229,277)(230,278)(231,279)
(232,280)(233,285)(234,286)(235,287)(236,288)(237,281)(238,282)(239,283)
(240,284)(297,301)(298,302)(299,303)(300,304)(313,317)(314,318)(315,319)
(316,320)(329,333)(330,334)(331,335)(332,336)(337,385)(338,386)(339,387)
(340,388)(341,389)(342,390)(343,391)(344,392)(345,397)(346,398)(347,399)
(348,400)(349,393)(350,394)(351,395)(352,396)(353,401)(354,402)(355,403)
(356,404)(357,405)(358,406)(359,407)(360,408)(361,413)(362,414)(363,415)
(364,416)(365,409)(366,410)(367,411)(368,412)(369,417)(370,418)(371,419)
(372,420)(373,421)(374,422)(375,423)(376,424)(377,429)(378,430)(379,431)
(380,432)(381,425)(382,426)(383,427)(384,428);
s1 := Sym(432)!(  1, 49)(  2, 50)(  3, 52)(  4, 51)(  5, 61)(  6, 62)(  7, 64)
(  8, 63)(  9, 57)( 10, 58)( 11, 60)( 12, 59)( 13, 53)( 14, 54)( 15, 56)
( 16, 55)( 17, 81)( 18, 82)( 19, 84)( 20, 83)( 21, 93)( 22, 94)( 23, 96)
( 24, 95)( 25, 89)( 26, 90)( 27, 92)( 28, 91)( 29, 85)( 30, 86)( 31, 88)
( 32, 87)( 33, 65)( 34, 66)( 35, 68)( 36, 67)( 37, 77)( 38, 78)( 39, 80)
( 40, 79)( 41, 73)( 42, 74)( 43, 76)( 44, 75)( 45, 69)( 46, 70)( 47, 72)
( 48, 71)( 99,100)(101,109)(102,110)(103,112)(104,111)(107,108)(113,129)
(114,130)(115,132)(116,131)(117,141)(118,142)(119,144)(120,143)(121,137)
(122,138)(123,140)(124,139)(125,133)(126,134)(127,136)(128,135)(145,369)
(146,370)(147,372)(148,371)(149,381)(150,382)(151,384)(152,383)(153,377)
(154,378)(155,380)(156,379)(157,373)(158,374)(159,376)(160,375)(161,353)
(162,354)(163,356)(164,355)(165,365)(166,366)(167,368)(168,367)(169,361)
(170,362)(171,364)(172,363)(173,357)(174,358)(175,360)(176,359)(177,337)
(178,338)(179,340)(180,339)(181,349)(182,350)(183,352)(184,351)(185,345)
(186,346)(187,348)(188,347)(189,341)(190,342)(191,344)(192,343)(193,321)
(194,322)(195,324)(196,323)(197,333)(198,334)(199,336)(200,335)(201,329)
(202,330)(203,332)(204,331)(205,325)(206,326)(207,328)(208,327)(209,305)
(210,306)(211,308)(212,307)(213,317)(214,318)(215,320)(216,319)(217,313)
(218,314)(219,316)(220,315)(221,309)(222,310)(223,312)(224,311)(225,289)
(226,290)(227,292)(228,291)(229,301)(230,302)(231,304)(232,303)(233,297)
(234,298)(235,300)(236,299)(237,293)(238,294)(239,296)(240,295)(241,417)
(242,418)(243,420)(244,419)(245,429)(246,430)(247,432)(248,431)(249,425)
(250,426)(251,428)(252,427)(253,421)(254,422)(255,424)(256,423)(257,401)
(258,402)(259,404)(260,403)(261,413)(262,414)(263,416)(264,415)(265,409)
(266,410)(267,412)(268,411)(269,405)(270,406)(271,408)(272,407)(273,385)
(274,386)(275,388)(276,387)(277,397)(278,398)(279,400)(280,399)(281,393)
(282,394)(283,396)(284,395)(285,389)(286,390)(287,392)(288,391);
s2 := Sym(432)!(  1,149)(  2,152)(  3,151)(  4,150)(  5,145)(  6,148)(  7,147)
(  8,146)(  9,157)( 10,160)( 11,159)( 12,158)( 13,153)( 14,156)( 15,155)
( 16,154)( 17,181)( 18,184)( 19,183)( 20,182)( 21,177)( 22,180)( 23,179)
( 24,178)( 25,189)( 26,192)( 27,191)( 28,190)( 29,185)( 30,188)( 31,187)
( 32,186)( 33,165)( 34,168)( 35,167)( 36,166)( 37,161)( 38,164)( 39,163)
( 40,162)( 41,173)( 42,176)( 43,175)( 44,174)( 45,169)( 46,172)( 47,171)
( 48,170)( 49,197)( 50,200)( 51,199)( 52,198)( 53,193)( 54,196)( 55,195)
( 56,194)( 57,205)( 58,208)( 59,207)( 60,206)( 61,201)( 62,204)( 63,203)
( 64,202)( 65,229)( 66,232)( 67,231)( 68,230)( 69,225)( 70,228)( 71,227)
( 72,226)( 73,237)( 74,240)( 75,239)( 76,238)( 77,233)( 78,236)( 79,235)
( 80,234)( 81,213)( 82,216)( 83,215)( 84,214)( 85,209)( 86,212)( 87,211)
( 88,210)( 89,221)( 90,224)( 91,223)( 92,222)( 93,217)( 94,220)( 95,219)
( 96,218)( 97,245)( 98,248)( 99,247)(100,246)(101,241)(102,244)(103,243)
(104,242)(105,253)(106,256)(107,255)(108,254)(109,249)(110,252)(111,251)
(112,250)(113,277)(114,280)(115,279)(116,278)(117,273)(118,276)(119,275)
(120,274)(121,285)(122,288)(123,287)(124,286)(125,281)(126,284)(127,283)
(128,282)(129,261)(130,264)(131,263)(132,262)(133,257)(134,260)(135,259)
(136,258)(137,269)(138,272)(139,271)(140,270)(141,265)(142,268)(143,267)
(144,266)(289,325)(290,328)(291,327)(292,326)(293,321)(294,324)(295,323)
(296,322)(297,333)(298,336)(299,335)(300,334)(301,329)(302,332)(303,331)
(304,330)(305,309)(306,312)(307,311)(308,310)(313,317)(314,320)(315,319)
(316,318)(337,373)(338,376)(339,375)(340,374)(341,369)(342,372)(343,371)
(344,370)(345,381)(346,384)(347,383)(348,382)(349,377)(350,380)(351,379)
(352,378)(353,357)(354,360)(355,359)(356,358)(361,365)(362,368)(363,367)
(364,366)(385,421)(386,424)(387,423)(388,422)(389,417)(390,420)(391,419)
(392,418)(393,429)(394,432)(395,431)(396,430)(397,425)(398,428)(399,427)
(400,426)(401,405)(402,408)(403,407)(404,406)(409,413)(410,416)(411,415)
(412,414);
s3 := Sym(432)!(  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)
(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)
(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)
(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)
(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)
(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)
(207,208)(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)
(223,224)(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)
(239,240)(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)
(255,256)(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)
(271,272)(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)
(287,288)(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,302)
(303,304)(305,306)(307,308)(309,310)(311,312)(313,314)(315,316)(317,318)
(319,320)(321,322)(323,324)(325,326)(327,328)(329,330)(331,332)(333,334)
(335,336)(337,338)(339,340)(341,342)(343,344)(345,346)(347,348)(349,350)
(351,352)(353,354)(355,356)(357,358)(359,360)(361,362)(363,364)(365,366)
(367,368)(369,370)(371,372)(373,374)(375,376)(377,378)(379,380)(381,382)
(383,384)(385,386)(387,388)(389,390)(391,392)(393,394)(395,396)(397,398)
(399,400)(401,402)(403,404)(405,406)(407,408)(409,410)(411,412)(413,414)
(415,416)(417,418)(419,420)(421,422)(423,424)(425,426)(427,428)(429,430)
(431,432);
poly := sub<Sym(432)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3, s3*s2*s1*s3*s2*s3*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope