Polytope of Type {4,36,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,36,6}*1728g
if this polytope has a name.
Group : SmallGroup(1728,46098)
Rank : 4
Schlafli Type : {4,36,6}
Number of vertices, edges, etc : 4, 72, 108, 6
Order of s0s1s2s3 : 9
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {4,12,6}*576h
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)
(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)
(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)
(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192)
(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)(206,208)
(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)(222,224)
(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)(238,240)
(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)(254,256)
(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)(270,272)
(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)(286,288)
(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)(302,304)
(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)(318,320)
(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)(334,336)
(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)(350,352)
(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)(366,368)
(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)(382,384)
(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)(398,400)
(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)(414,416)
(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)(430,432);;
s1 := (  1,  9)(  2, 10)(  3, 12)(  4, 11)(  5, 13)(  6, 14)(  7, 16)(  8, 15)
( 17, 41)( 18, 42)( 19, 44)( 20, 43)( 21, 45)( 22, 46)( 23, 48)( 24, 47)
( 25, 33)( 26, 34)( 27, 36)( 28, 35)( 29, 37)( 30, 38)( 31, 40)( 32, 39)
( 49, 57)( 50, 58)( 51, 60)( 52, 59)( 53, 61)( 54, 62)( 55, 64)( 56, 63)
( 65, 89)( 66, 90)( 67, 92)( 68, 91)( 69, 93)( 70, 94)( 71, 96)( 72, 95)
( 73, 81)( 74, 82)( 75, 84)( 76, 83)( 77, 85)( 78, 86)( 79, 88)( 80, 87)
( 97,105)( 98,106)( 99,108)(100,107)(101,109)(102,110)(103,112)(104,111)
(113,137)(114,138)(115,140)(116,139)(117,141)(118,142)(119,144)(120,143)
(121,129)(122,130)(123,132)(124,131)(125,133)(126,134)(127,136)(128,135)
(145,329)(146,330)(147,332)(148,331)(149,333)(150,334)(151,336)(152,335)
(153,321)(154,322)(155,324)(156,323)(157,325)(158,326)(159,328)(160,327)
(161,313)(162,314)(163,316)(164,315)(165,317)(166,318)(167,320)(168,319)
(169,305)(170,306)(171,308)(172,307)(173,309)(174,310)(175,312)(176,311)
(177,297)(178,298)(179,300)(180,299)(181,301)(182,302)(183,304)(184,303)
(185,289)(186,290)(187,292)(188,291)(189,293)(190,294)(191,296)(192,295)
(193,377)(194,378)(195,380)(196,379)(197,381)(198,382)(199,384)(200,383)
(201,369)(202,370)(203,372)(204,371)(205,373)(206,374)(207,376)(208,375)
(209,361)(210,362)(211,364)(212,363)(213,365)(214,366)(215,368)(216,367)
(217,353)(218,354)(219,356)(220,355)(221,357)(222,358)(223,360)(224,359)
(225,345)(226,346)(227,348)(228,347)(229,349)(230,350)(231,352)(232,351)
(233,337)(234,338)(235,340)(236,339)(237,341)(238,342)(239,344)(240,343)
(241,425)(242,426)(243,428)(244,427)(245,429)(246,430)(247,432)(248,431)
(249,417)(250,418)(251,420)(252,419)(253,421)(254,422)(255,424)(256,423)
(257,409)(258,410)(259,412)(260,411)(261,413)(262,414)(263,416)(264,415)
(265,401)(266,402)(267,404)(268,403)(269,405)(270,406)(271,408)(272,407)
(273,393)(274,394)(275,396)(276,395)(277,397)(278,398)(279,400)(280,399)
(281,385)(282,386)(283,388)(284,387)(285,389)(286,390)(287,392)(288,391);;
s2 := (  1,145)(  2,148)(  3,147)(  4,146)(  5,149)(  6,152)(  7,151)(  8,150)
(  9,157)( 10,160)( 11,159)( 12,158)( 13,153)( 14,156)( 15,155)( 16,154)
( 17,177)( 18,180)( 19,179)( 20,178)( 21,181)( 22,184)( 23,183)( 24,182)
( 25,189)( 26,192)( 27,191)( 28,190)( 29,185)( 30,188)( 31,187)( 32,186)
( 33,161)( 34,164)( 35,163)( 36,162)( 37,165)( 38,168)( 39,167)( 40,166)
( 41,173)( 42,176)( 43,175)( 44,174)( 45,169)( 46,172)( 47,171)( 48,170)
( 49,241)( 50,244)( 51,243)( 52,242)( 53,245)( 54,248)( 55,247)( 56,246)
( 57,253)( 58,256)( 59,255)( 60,254)( 61,249)( 62,252)( 63,251)( 64,250)
( 65,273)( 66,276)( 67,275)( 68,274)( 69,277)( 70,280)( 71,279)( 72,278)
( 73,285)( 74,288)( 75,287)( 76,286)( 77,281)( 78,284)( 79,283)( 80,282)
( 81,257)( 82,260)( 83,259)( 84,258)( 85,261)( 86,264)( 87,263)( 88,262)
( 89,269)( 90,272)( 91,271)( 92,270)( 93,265)( 94,268)( 95,267)( 96,266)
( 97,193)( 98,196)( 99,195)(100,194)(101,197)(102,200)(103,199)(104,198)
(105,205)(106,208)(107,207)(108,206)(109,201)(110,204)(111,203)(112,202)
(113,225)(114,228)(115,227)(116,226)(117,229)(118,232)(119,231)(120,230)
(121,237)(122,240)(123,239)(124,238)(125,233)(126,236)(127,235)(128,234)
(129,209)(130,212)(131,211)(132,210)(133,213)(134,216)(135,215)(136,214)
(137,221)(138,224)(139,223)(140,222)(141,217)(142,220)(143,219)(144,218)
(289,321)(290,324)(291,323)(292,322)(293,325)(294,328)(295,327)(296,326)
(297,333)(298,336)(299,335)(300,334)(301,329)(302,332)(303,331)(304,330)
(306,308)(310,312)(313,317)(314,320)(315,319)(316,318)(337,417)(338,420)
(339,419)(340,418)(341,421)(342,424)(343,423)(344,422)(345,429)(346,432)
(347,431)(348,430)(349,425)(350,428)(351,427)(352,426)(353,401)(354,404)
(355,403)(356,402)(357,405)(358,408)(359,407)(360,406)(361,413)(362,416)
(363,415)(364,414)(365,409)(366,412)(367,411)(368,410)(369,385)(370,388)
(371,387)(372,386)(373,389)(374,392)(375,391)(376,390)(377,397)(378,400)
(379,399)(380,398)(381,393)(382,396)(383,395)(384,394);;
s3 := (  1, 49)(  2, 50)(  3, 51)(  4, 52)(  5, 61)(  6, 62)(  7, 63)(  8, 64)
(  9, 57)( 10, 58)( 11, 59)( 12, 60)( 13, 53)( 14, 54)( 15, 55)( 16, 56)
( 17, 65)( 18, 66)( 19, 67)( 20, 68)( 21, 77)( 22, 78)( 23, 79)( 24, 80)
( 25, 73)( 26, 74)( 27, 75)( 28, 76)( 29, 69)( 30, 70)( 31, 71)( 32, 72)
( 33, 81)( 34, 82)( 35, 83)( 36, 84)( 37, 93)( 38, 94)( 39, 95)( 40, 96)
( 41, 89)( 42, 90)( 43, 91)( 44, 92)( 45, 85)( 46, 86)( 47, 87)( 48, 88)
(101,109)(102,110)(103,111)(104,112)(117,125)(118,126)(119,127)(120,128)
(133,141)(134,142)(135,143)(136,144)(145,193)(146,194)(147,195)(148,196)
(149,205)(150,206)(151,207)(152,208)(153,201)(154,202)(155,203)(156,204)
(157,197)(158,198)(159,199)(160,200)(161,209)(162,210)(163,211)(164,212)
(165,221)(166,222)(167,223)(168,224)(169,217)(170,218)(171,219)(172,220)
(173,213)(174,214)(175,215)(176,216)(177,225)(178,226)(179,227)(180,228)
(181,237)(182,238)(183,239)(184,240)(185,233)(186,234)(187,235)(188,236)
(189,229)(190,230)(191,231)(192,232)(245,253)(246,254)(247,255)(248,256)
(261,269)(262,270)(263,271)(264,272)(277,285)(278,286)(279,287)(280,288)
(289,337)(290,338)(291,339)(292,340)(293,349)(294,350)(295,351)(296,352)
(297,345)(298,346)(299,347)(300,348)(301,341)(302,342)(303,343)(304,344)
(305,353)(306,354)(307,355)(308,356)(309,365)(310,366)(311,367)(312,368)
(313,361)(314,362)(315,363)(316,364)(317,357)(318,358)(319,359)(320,360)
(321,369)(322,370)(323,371)(324,372)(325,381)(326,382)(327,383)(328,384)
(329,377)(330,378)(331,379)(332,380)(333,373)(334,374)(335,375)(336,376)
(389,397)(390,398)(391,399)(392,400)(405,413)(406,414)(407,415)(408,416)
(421,429)(422,430)(423,431)(424,432);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!(  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)
(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)
(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)
(190,192)(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)
(206,208)(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)
(222,224)(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)
(238,240)(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)
(254,256)(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)
(270,272)(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)
(286,288)(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)
(302,304)(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)
(318,320)(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)
(334,336)(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)
(350,352)(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)
(366,368)(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)
(382,384)(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)
(398,400)(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)
(414,416)(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)
(430,432);
s1 := Sym(432)!(  1,  9)(  2, 10)(  3, 12)(  4, 11)(  5, 13)(  6, 14)(  7, 16)
(  8, 15)( 17, 41)( 18, 42)( 19, 44)( 20, 43)( 21, 45)( 22, 46)( 23, 48)
( 24, 47)( 25, 33)( 26, 34)( 27, 36)( 28, 35)( 29, 37)( 30, 38)( 31, 40)
( 32, 39)( 49, 57)( 50, 58)( 51, 60)( 52, 59)( 53, 61)( 54, 62)( 55, 64)
( 56, 63)( 65, 89)( 66, 90)( 67, 92)( 68, 91)( 69, 93)( 70, 94)( 71, 96)
( 72, 95)( 73, 81)( 74, 82)( 75, 84)( 76, 83)( 77, 85)( 78, 86)( 79, 88)
( 80, 87)( 97,105)( 98,106)( 99,108)(100,107)(101,109)(102,110)(103,112)
(104,111)(113,137)(114,138)(115,140)(116,139)(117,141)(118,142)(119,144)
(120,143)(121,129)(122,130)(123,132)(124,131)(125,133)(126,134)(127,136)
(128,135)(145,329)(146,330)(147,332)(148,331)(149,333)(150,334)(151,336)
(152,335)(153,321)(154,322)(155,324)(156,323)(157,325)(158,326)(159,328)
(160,327)(161,313)(162,314)(163,316)(164,315)(165,317)(166,318)(167,320)
(168,319)(169,305)(170,306)(171,308)(172,307)(173,309)(174,310)(175,312)
(176,311)(177,297)(178,298)(179,300)(180,299)(181,301)(182,302)(183,304)
(184,303)(185,289)(186,290)(187,292)(188,291)(189,293)(190,294)(191,296)
(192,295)(193,377)(194,378)(195,380)(196,379)(197,381)(198,382)(199,384)
(200,383)(201,369)(202,370)(203,372)(204,371)(205,373)(206,374)(207,376)
(208,375)(209,361)(210,362)(211,364)(212,363)(213,365)(214,366)(215,368)
(216,367)(217,353)(218,354)(219,356)(220,355)(221,357)(222,358)(223,360)
(224,359)(225,345)(226,346)(227,348)(228,347)(229,349)(230,350)(231,352)
(232,351)(233,337)(234,338)(235,340)(236,339)(237,341)(238,342)(239,344)
(240,343)(241,425)(242,426)(243,428)(244,427)(245,429)(246,430)(247,432)
(248,431)(249,417)(250,418)(251,420)(252,419)(253,421)(254,422)(255,424)
(256,423)(257,409)(258,410)(259,412)(260,411)(261,413)(262,414)(263,416)
(264,415)(265,401)(266,402)(267,404)(268,403)(269,405)(270,406)(271,408)
(272,407)(273,393)(274,394)(275,396)(276,395)(277,397)(278,398)(279,400)
(280,399)(281,385)(282,386)(283,388)(284,387)(285,389)(286,390)(287,392)
(288,391);
s2 := Sym(432)!(  1,145)(  2,148)(  3,147)(  4,146)(  5,149)(  6,152)(  7,151)
(  8,150)(  9,157)( 10,160)( 11,159)( 12,158)( 13,153)( 14,156)( 15,155)
( 16,154)( 17,177)( 18,180)( 19,179)( 20,178)( 21,181)( 22,184)( 23,183)
( 24,182)( 25,189)( 26,192)( 27,191)( 28,190)( 29,185)( 30,188)( 31,187)
( 32,186)( 33,161)( 34,164)( 35,163)( 36,162)( 37,165)( 38,168)( 39,167)
( 40,166)( 41,173)( 42,176)( 43,175)( 44,174)( 45,169)( 46,172)( 47,171)
( 48,170)( 49,241)( 50,244)( 51,243)( 52,242)( 53,245)( 54,248)( 55,247)
( 56,246)( 57,253)( 58,256)( 59,255)( 60,254)( 61,249)( 62,252)( 63,251)
( 64,250)( 65,273)( 66,276)( 67,275)( 68,274)( 69,277)( 70,280)( 71,279)
( 72,278)( 73,285)( 74,288)( 75,287)( 76,286)( 77,281)( 78,284)( 79,283)
( 80,282)( 81,257)( 82,260)( 83,259)( 84,258)( 85,261)( 86,264)( 87,263)
( 88,262)( 89,269)( 90,272)( 91,271)( 92,270)( 93,265)( 94,268)( 95,267)
( 96,266)( 97,193)( 98,196)( 99,195)(100,194)(101,197)(102,200)(103,199)
(104,198)(105,205)(106,208)(107,207)(108,206)(109,201)(110,204)(111,203)
(112,202)(113,225)(114,228)(115,227)(116,226)(117,229)(118,232)(119,231)
(120,230)(121,237)(122,240)(123,239)(124,238)(125,233)(126,236)(127,235)
(128,234)(129,209)(130,212)(131,211)(132,210)(133,213)(134,216)(135,215)
(136,214)(137,221)(138,224)(139,223)(140,222)(141,217)(142,220)(143,219)
(144,218)(289,321)(290,324)(291,323)(292,322)(293,325)(294,328)(295,327)
(296,326)(297,333)(298,336)(299,335)(300,334)(301,329)(302,332)(303,331)
(304,330)(306,308)(310,312)(313,317)(314,320)(315,319)(316,318)(337,417)
(338,420)(339,419)(340,418)(341,421)(342,424)(343,423)(344,422)(345,429)
(346,432)(347,431)(348,430)(349,425)(350,428)(351,427)(352,426)(353,401)
(354,404)(355,403)(356,402)(357,405)(358,408)(359,407)(360,406)(361,413)
(362,416)(363,415)(364,414)(365,409)(366,412)(367,411)(368,410)(369,385)
(370,388)(371,387)(372,386)(373,389)(374,392)(375,391)(376,390)(377,397)
(378,400)(379,399)(380,398)(381,393)(382,396)(383,395)(384,394);
s3 := Sym(432)!(  1, 49)(  2, 50)(  3, 51)(  4, 52)(  5, 61)(  6, 62)(  7, 63)
(  8, 64)(  9, 57)( 10, 58)( 11, 59)( 12, 60)( 13, 53)( 14, 54)( 15, 55)
( 16, 56)( 17, 65)( 18, 66)( 19, 67)( 20, 68)( 21, 77)( 22, 78)( 23, 79)
( 24, 80)( 25, 73)( 26, 74)( 27, 75)( 28, 76)( 29, 69)( 30, 70)( 31, 71)
( 32, 72)( 33, 81)( 34, 82)( 35, 83)( 36, 84)( 37, 93)( 38, 94)( 39, 95)
( 40, 96)( 41, 89)( 42, 90)( 43, 91)( 44, 92)( 45, 85)( 46, 86)( 47, 87)
( 48, 88)(101,109)(102,110)(103,111)(104,112)(117,125)(118,126)(119,127)
(120,128)(133,141)(134,142)(135,143)(136,144)(145,193)(146,194)(147,195)
(148,196)(149,205)(150,206)(151,207)(152,208)(153,201)(154,202)(155,203)
(156,204)(157,197)(158,198)(159,199)(160,200)(161,209)(162,210)(163,211)
(164,212)(165,221)(166,222)(167,223)(168,224)(169,217)(170,218)(171,219)
(172,220)(173,213)(174,214)(175,215)(176,216)(177,225)(178,226)(179,227)
(180,228)(181,237)(182,238)(183,239)(184,240)(185,233)(186,234)(187,235)
(188,236)(189,229)(190,230)(191,231)(192,232)(245,253)(246,254)(247,255)
(248,256)(261,269)(262,270)(263,271)(264,272)(277,285)(278,286)(279,287)
(280,288)(289,337)(290,338)(291,339)(292,340)(293,349)(294,350)(295,351)
(296,352)(297,345)(298,346)(299,347)(300,348)(301,341)(302,342)(303,343)
(304,344)(305,353)(306,354)(307,355)(308,356)(309,365)(310,366)(311,367)
(312,368)(313,361)(314,362)(315,363)(316,364)(317,357)(318,358)(319,359)
(320,360)(321,369)(322,370)(323,371)(324,372)(325,381)(326,382)(327,383)
(328,384)(329,377)(330,378)(331,379)(332,380)(333,373)(334,374)(335,375)
(336,376)(389,397)(390,398)(391,399)(392,400)(405,413)(406,414)(407,415)
(408,416)(421,429)(422,430)(423,431)(424,432);
poly := sub<Sym(432)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s3 >; 
 
References : None.
to this polytope