include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,3,6,3,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,3,6,3,4}*1728
if this polytope has a name.
Group : SmallGroup(1728,46099)
Rank : 6
Schlafli Type : {4,3,6,3,4}
Number of vertices, edges, etc : 4, 6, 9, 9, 6, 4
Order of s0s1s2s3s4s5 : 3
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {4,3,2,3,4}*576
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 13)( 6, 14)( 7, 15)( 8, 16)
( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)( 24, 32)
( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)( 40, 48)
( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)( 56, 64)
( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)( 72, 80)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)( 88, 96)
( 97,105)( 98,106)( 99,107)(100,108)(101,109)(102,110)(103,111)(104,112)
(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)
(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144);;
s1 := ( 9, 13)( 10, 14)( 11, 15)( 12, 16)( 17, 33)( 18, 34)( 19, 35)( 20, 36)
( 21, 37)( 22, 38)( 23, 39)( 24, 40)( 25, 45)( 26, 46)( 27, 47)( 28, 48)
( 29, 41)( 30, 42)( 31, 43)( 32, 44)( 49, 97)( 50, 98)( 51, 99)( 52,100)
( 53,101)( 54,102)( 55,103)( 56,104)( 57,109)( 58,110)( 59,111)( 60,112)
( 61,105)( 62,106)( 63,107)( 64,108)( 65,129)( 66,130)( 67,131)( 68,132)
( 69,133)( 70,134)( 71,135)( 72,136)( 73,141)( 74,142)( 75,143)( 76,144)
( 77,137)( 78,138)( 79,139)( 80,140)( 81,113)( 82,114)( 83,115)( 84,116)
( 85,117)( 86,118)( 87,119)( 88,120)( 89,125)( 90,126)( 91,127)( 92,128)
( 93,121)( 94,122)( 95,123)( 96,124);;
s2 := ( 1, 49)( 2, 50)( 3, 51)( 4, 52)( 5, 61)( 6, 62)( 7, 63)( 8, 64)
( 9, 57)( 10, 58)( 11, 59)( 12, 60)( 13, 53)( 14, 54)( 15, 55)( 16, 56)
( 17, 81)( 18, 82)( 19, 83)( 20, 84)( 21, 93)( 22, 94)( 23, 95)( 24, 96)
( 25, 89)( 26, 90)( 27, 91)( 28, 92)( 29, 85)( 30, 86)( 31, 87)( 32, 88)
( 33, 65)( 34, 66)( 35, 67)( 36, 68)( 37, 77)( 38, 78)( 39, 79)( 40, 80)
( 41, 73)( 42, 74)( 43, 75)( 44, 76)( 45, 69)( 46, 70)( 47, 71)( 48, 72)
(101,109)(102,110)(103,111)(104,112)(113,129)(114,130)(115,131)(116,132)
(117,141)(118,142)(119,143)(120,144)(121,137)(122,138)(123,139)(124,140)
(125,133)(126,134)(127,135)(128,136);;
s3 := ( 2, 4)( 6, 8)( 10, 12)( 14, 16)( 17, 33)( 18, 36)( 19, 35)( 20, 34)
( 21, 37)( 22, 40)( 23, 39)( 24, 38)( 25, 41)( 26, 44)( 27, 43)( 28, 42)
( 29, 45)( 30, 48)( 31, 47)( 32, 46)( 49, 65)( 50, 68)( 51, 67)( 52, 66)
( 53, 69)( 54, 72)( 55, 71)( 56, 70)( 57, 73)( 58, 76)( 59, 75)( 60, 74)
( 61, 77)( 62, 80)( 63, 79)( 64, 78)( 82, 84)( 86, 88)( 90, 92)( 94, 96)
( 97,129)( 98,132)( 99,131)(100,130)(101,133)(102,136)(103,135)(104,134)
(105,137)(106,140)(107,139)(108,138)(109,141)(110,144)(111,143)(112,142)
(114,116)(118,120)(122,124)(126,128);;
s4 := ( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 17, 33)( 18, 34)( 19, 36)( 20, 35)
( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 41)( 26, 42)( 27, 44)( 28, 43)
( 29, 45)( 30, 46)( 31, 48)( 32, 47)( 51, 52)( 55, 56)( 59, 60)( 63, 64)
( 65, 81)( 66, 82)( 67, 84)( 68, 83)( 69, 85)( 70, 86)( 71, 88)( 72, 87)
( 73, 89)( 74, 90)( 75, 92)( 76, 91)( 77, 93)( 78, 94)( 79, 96)( 80, 95)
( 99,100)(103,104)(107,108)(111,112)(113,129)(114,130)(115,132)(116,131)
(117,133)(118,134)(119,136)(120,135)(121,137)(122,138)(123,140)(124,139)
(125,141)(126,142)(127,144)(128,143);;
s5 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s4*s5*s4*s5*s4*s5*s4*s5,
s2*s0*s1*s2*s0*s1*s2*s0*s1, s3*s5*s4*s3*s5*s4*s3*s5*s4,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(144)!( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 13)( 6, 14)( 7, 15)
( 8, 16)( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)
( 24, 32)( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)
( 40, 48)( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)
( 56, 64)( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)
( 72, 80)( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)
( 88, 96)( 97,105)( 98,106)( 99,107)(100,108)(101,109)(102,110)(103,111)
(104,112)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)
(120,128)(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)
(136,144);
s1 := Sym(144)!( 9, 13)( 10, 14)( 11, 15)( 12, 16)( 17, 33)( 18, 34)( 19, 35)
( 20, 36)( 21, 37)( 22, 38)( 23, 39)( 24, 40)( 25, 45)( 26, 46)( 27, 47)
( 28, 48)( 29, 41)( 30, 42)( 31, 43)( 32, 44)( 49, 97)( 50, 98)( 51, 99)
( 52,100)( 53,101)( 54,102)( 55,103)( 56,104)( 57,109)( 58,110)( 59,111)
( 60,112)( 61,105)( 62,106)( 63,107)( 64,108)( 65,129)( 66,130)( 67,131)
( 68,132)( 69,133)( 70,134)( 71,135)( 72,136)( 73,141)( 74,142)( 75,143)
( 76,144)( 77,137)( 78,138)( 79,139)( 80,140)( 81,113)( 82,114)( 83,115)
( 84,116)( 85,117)( 86,118)( 87,119)( 88,120)( 89,125)( 90,126)( 91,127)
( 92,128)( 93,121)( 94,122)( 95,123)( 96,124);
s2 := Sym(144)!( 1, 49)( 2, 50)( 3, 51)( 4, 52)( 5, 61)( 6, 62)( 7, 63)
( 8, 64)( 9, 57)( 10, 58)( 11, 59)( 12, 60)( 13, 53)( 14, 54)( 15, 55)
( 16, 56)( 17, 81)( 18, 82)( 19, 83)( 20, 84)( 21, 93)( 22, 94)( 23, 95)
( 24, 96)( 25, 89)( 26, 90)( 27, 91)( 28, 92)( 29, 85)( 30, 86)( 31, 87)
( 32, 88)( 33, 65)( 34, 66)( 35, 67)( 36, 68)( 37, 77)( 38, 78)( 39, 79)
( 40, 80)( 41, 73)( 42, 74)( 43, 75)( 44, 76)( 45, 69)( 46, 70)( 47, 71)
( 48, 72)(101,109)(102,110)(103,111)(104,112)(113,129)(114,130)(115,131)
(116,132)(117,141)(118,142)(119,143)(120,144)(121,137)(122,138)(123,139)
(124,140)(125,133)(126,134)(127,135)(128,136);
s3 := Sym(144)!( 2, 4)( 6, 8)( 10, 12)( 14, 16)( 17, 33)( 18, 36)( 19, 35)
( 20, 34)( 21, 37)( 22, 40)( 23, 39)( 24, 38)( 25, 41)( 26, 44)( 27, 43)
( 28, 42)( 29, 45)( 30, 48)( 31, 47)( 32, 46)( 49, 65)( 50, 68)( 51, 67)
( 52, 66)( 53, 69)( 54, 72)( 55, 71)( 56, 70)( 57, 73)( 58, 76)( 59, 75)
( 60, 74)( 61, 77)( 62, 80)( 63, 79)( 64, 78)( 82, 84)( 86, 88)( 90, 92)
( 94, 96)( 97,129)( 98,132)( 99,131)(100,130)(101,133)(102,136)(103,135)
(104,134)(105,137)(106,140)(107,139)(108,138)(109,141)(110,144)(111,143)
(112,142)(114,116)(118,120)(122,124)(126,128);
s4 := Sym(144)!( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 17, 33)( 18, 34)( 19, 36)
( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 41)( 26, 42)( 27, 44)
( 28, 43)( 29, 45)( 30, 46)( 31, 48)( 32, 47)( 51, 52)( 55, 56)( 59, 60)
( 63, 64)( 65, 81)( 66, 82)( 67, 84)( 68, 83)( 69, 85)( 70, 86)( 71, 88)
( 72, 87)( 73, 89)( 74, 90)( 75, 92)( 76, 91)( 77, 93)( 78, 94)( 79, 96)
( 80, 95)( 99,100)(103,104)(107,108)(111,112)(113,129)(114,130)(115,132)
(116,131)(117,133)(118,134)(119,136)(120,135)(121,137)(122,138)(123,140)
(124,139)(125,141)(126,142)(127,144)(128,143);
s5 := Sym(144)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144);
poly := sub<Sym(144)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s4*s5*s4*s5*s4*s5*s4*s5, s2*s0*s1*s2*s0*s1*s2*s0*s1,
s3*s5*s4*s3*s5*s4*s3*s5*s4, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3 >;
References : None.
to this polytope