include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,6,4}*1728b
if this polytope has a name.
Group : SmallGroup(1728,46100)
Rank : 4
Schlafli Type : {9,6,4}
Number of vertices, edges, etc : 9, 108, 48, 16
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 4
Special Properties :
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,6,4}*576b
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)( 26, 46)
( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 49,129)( 50,130)
( 51,132)( 52,131)( 53,133)( 54,134)( 55,136)( 56,135)( 57,141)( 58,142)
( 59,144)( 60,143)( 61,137)( 62,138)( 63,140)( 64,139)( 65,113)( 66,114)
( 67,116)( 68,115)( 69,117)( 70,118)( 71,120)( 72,119)( 73,125)( 74,126)
( 75,128)( 76,127)( 77,121)( 78,122)( 79,124)( 80,123)( 81, 97)( 82, 98)
( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)( 88,103)( 89,109)( 90,110)
( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)( 96,107);;
s1 := ( 1, 49)( 2, 50)( 3, 52)( 4, 51)( 5, 61)( 6, 62)( 7, 64)( 8, 63)
( 9, 57)( 10, 58)( 11, 60)( 12, 59)( 13, 53)( 14, 54)( 15, 56)( 16, 55)
( 17, 81)( 18, 82)( 19, 84)( 20, 83)( 21, 93)( 22, 94)( 23, 96)( 24, 95)
( 25, 89)( 26, 90)( 27, 92)( 28, 91)( 29, 85)( 30, 86)( 31, 88)( 32, 87)
( 33, 65)( 34, 66)( 35, 68)( 36, 67)( 37, 77)( 38, 78)( 39, 80)( 40, 79)
( 41, 73)( 42, 74)( 43, 76)( 44, 75)( 45, 69)( 46, 70)( 47, 72)( 48, 71)
( 97,129)( 98,130)( 99,132)(100,131)(101,141)(102,142)(103,144)(104,143)
(105,137)(106,138)(107,140)(108,139)(109,133)(110,134)(111,136)(112,135)
(115,116)(117,125)(118,126)(119,128)(120,127)(123,124);;
s2 := ( 2, 5)( 3, 13)( 4, 9)( 7, 14)( 8, 10)( 11, 16)( 18, 21)( 19, 29)
( 20, 25)( 23, 30)( 24, 26)( 27, 32)( 34, 37)( 35, 45)( 36, 41)( 39, 46)
( 40, 42)( 43, 48)( 50, 53)( 51, 61)( 52, 57)( 55, 62)( 56, 58)( 59, 64)
( 66, 69)( 67, 77)( 68, 73)( 71, 78)( 72, 74)( 75, 80)( 82, 85)( 83, 93)
( 84, 89)( 87, 94)( 88, 90)( 91, 96)( 98,101)( 99,109)(100,105)(103,110)
(104,106)(107,112)(114,117)(115,125)(116,121)(119,126)(120,122)(123,128)
(130,133)(131,141)(132,137)(135,142)(136,138)(139,144);;
s3 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1*s0*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(144)!( 3, 4)( 7, 8)( 9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)
( 26, 46)( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 49,129)
( 50,130)( 51,132)( 52,131)( 53,133)( 54,134)( 55,136)( 56,135)( 57,141)
( 58,142)( 59,144)( 60,143)( 61,137)( 62,138)( 63,140)( 64,139)( 65,113)
( 66,114)( 67,116)( 68,115)( 69,117)( 70,118)( 71,120)( 72,119)( 73,125)
( 74,126)( 75,128)( 76,127)( 77,121)( 78,122)( 79,124)( 80,123)( 81, 97)
( 82, 98)( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)( 88,103)( 89,109)
( 90,110)( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)( 96,107);
s1 := Sym(144)!( 1, 49)( 2, 50)( 3, 52)( 4, 51)( 5, 61)( 6, 62)( 7, 64)
( 8, 63)( 9, 57)( 10, 58)( 11, 60)( 12, 59)( 13, 53)( 14, 54)( 15, 56)
( 16, 55)( 17, 81)( 18, 82)( 19, 84)( 20, 83)( 21, 93)( 22, 94)( 23, 96)
( 24, 95)( 25, 89)( 26, 90)( 27, 92)( 28, 91)( 29, 85)( 30, 86)( 31, 88)
( 32, 87)( 33, 65)( 34, 66)( 35, 68)( 36, 67)( 37, 77)( 38, 78)( 39, 80)
( 40, 79)( 41, 73)( 42, 74)( 43, 76)( 44, 75)( 45, 69)( 46, 70)( 47, 72)
( 48, 71)( 97,129)( 98,130)( 99,132)(100,131)(101,141)(102,142)(103,144)
(104,143)(105,137)(106,138)(107,140)(108,139)(109,133)(110,134)(111,136)
(112,135)(115,116)(117,125)(118,126)(119,128)(120,127)(123,124);
s2 := Sym(144)!( 2, 5)( 3, 13)( 4, 9)( 7, 14)( 8, 10)( 11, 16)( 18, 21)
( 19, 29)( 20, 25)( 23, 30)( 24, 26)( 27, 32)( 34, 37)( 35, 45)( 36, 41)
( 39, 46)( 40, 42)( 43, 48)( 50, 53)( 51, 61)( 52, 57)( 55, 62)( 56, 58)
( 59, 64)( 66, 69)( 67, 77)( 68, 73)( 71, 78)( 72, 74)( 75, 80)( 82, 85)
( 83, 93)( 84, 89)( 87, 94)( 88, 90)( 91, 96)( 98,101)( 99,109)(100,105)
(103,110)(104,106)(107,112)(114,117)(115,125)(116,121)(119,126)(120,122)
(123,128)(130,133)(131,141)(132,137)(135,142)(136,138)(139,144);
s3 := Sym(144)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)
(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)
(143,144);
poly := sub<Sym(144)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1*s0*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope