include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,6,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,3}*1728b
if this polytope has a name.
Group : SmallGroup(1728,46101)
Rank : 4
Schlafli Type : {4,6,3}
Number of vertices, edges, etc : 16, 144, 108, 9
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 4
Special Properties :
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {4,6,3}*576b
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)(17,20)(18,19)
(21,24)(22,23)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36);;
s1 := ( 3, 4)( 5, 9)( 6,10)( 7,12)( 8,11)(13,21)(14,23)(15,22)(16,24)(18,19)
(25,33)(26,36)(27,35)(28,34)(30,32);;
s2 := ( 1,13)( 2,14)( 3,16)( 4,15)( 5,17)( 6,18)( 7,20)( 8,19)( 9,21)(10,22)
(11,24)(12,23)(27,28)(31,32)(35,36);;
s3 := ( 1,29)( 2,31)( 3,30)( 4,32)( 5,33)( 6,35)( 7,34)( 8,36)( 9,25)(10,27)
(11,26)(12,28)(14,15)(18,19)(22,23);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s3*s0*s1*s2*s1*s3*s0*s1*s2*s1*s3,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2,
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(36)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)(17,20)
(18,19)(21,24)(22,23)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36);
s1 := Sym(36)!( 3, 4)( 5, 9)( 6,10)( 7,12)( 8,11)(13,21)(14,23)(15,22)(16,24)
(18,19)(25,33)(26,36)(27,35)(28,34)(30,32);
s2 := Sym(36)!( 1,13)( 2,14)( 3,16)( 4,15)( 5,17)( 6,18)( 7,20)( 8,19)( 9,21)
(10,22)(11,24)(12,23)(27,28)(31,32)(35,36);
s3 := Sym(36)!( 1,29)( 2,31)( 3,30)( 4,32)( 5,33)( 6,35)( 7,34)( 8,36)( 9,25)
(10,27)(11,26)(12,28)(14,15)(18,19)(22,23);
poly := sub<Sym(36)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s3*s0*s1*s2*s1*s3*s0*s1*s2*s1*s3,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2,
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2 >;
References : None.
to this polytope