Polytope of Type {6,36,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,36,2}*1728
if this polytope has a name.
Group : SmallGroup(1728,46114)
Rank : 4
Schlafli Type : {6,36,2}
Number of vertices, edges, etc : 12, 216, 72, 2
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,36,2}*864c
   3-fold quotients : {6,12,2}*576a
   4-fold quotients : {6,18,2}*432a
   6-fold quotients : {6,12,2}*288d
   9-fold quotients : {6,4,2}*192
   12-fold quotients : {2,18,2}*144, {6,6,2}*144a
   18-fold quotients : {3,4,2}*96, {6,4,2}*96b, {6,4,2}*96c
   24-fold quotients : {2,9,2}*72
   36-fold quotients : {3,4,2}*48, {2,6,2}*48, {6,2,2}*48
   72-fold quotients : {2,3,2}*24, {3,2,2}*24
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  6,  7)( 10, 11)( 14, 15)( 18, 19)( 22, 23)( 26, 27)( 30, 31)
( 34, 35)( 37, 73)( 38, 75)( 39, 74)( 40, 76)( 41, 77)( 42, 79)( 43, 78)
( 44, 80)( 45, 81)( 46, 83)( 47, 82)( 48, 84)( 49, 85)( 50, 87)( 51, 86)
( 52, 88)( 53, 89)( 54, 91)( 55, 90)( 56, 92)( 57, 93)( 58, 95)( 59, 94)
( 60, 96)( 61, 97)( 62, 99)( 63, 98)( 64,100)( 65,101)( 66,103)( 67,102)
( 68,104)( 69,105)( 70,107)( 71,106)( 72,108)(110,111)(114,115)(118,119)
(122,123)(126,127)(130,131)(134,135)(138,139)(142,143)(145,181)(146,183)
(147,182)(148,184)(149,185)(150,187)(151,186)(152,188)(153,189)(154,191)
(155,190)(156,192)(157,193)(158,195)(159,194)(160,196)(161,197)(162,199)
(163,198)(164,200)(165,201)(166,203)(167,202)(168,204)(169,205)(170,207)
(171,206)(172,208)(173,209)(174,211)(175,210)(176,212)(177,213)(178,215)
(179,214)(180,216);;
s1 := (  1, 37)(  2, 38)(  3, 40)(  4, 39)(  5, 45)(  6, 46)(  7, 48)(  8, 47)
(  9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 65)( 14, 66)( 15, 68)( 16, 67)
( 17, 61)( 18, 62)( 19, 64)( 20, 63)( 21, 69)( 22, 70)( 23, 72)( 24, 71)
( 25, 53)( 26, 54)( 27, 56)( 28, 55)( 29, 49)( 30, 50)( 31, 52)( 32, 51)
( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 75, 76)( 77, 81)( 78, 82)( 79, 84)
( 80, 83)( 85,101)( 86,102)( 87,104)( 88,103)( 89, 97)( 90, 98)( 91,100)
( 92, 99)( 93,105)( 94,106)( 95,108)( 96,107)(109,145)(110,146)(111,148)
(112,147)(113,153)(114,154)(115,156)(116,155)(117,149)(118,150)(119,152)
(120,151)(121,173)(122,174)(123,176)(124,175)(125,169)(126,170)(127,172)
(128,171)(129,177)(130,178)(131,180)(132,179)(133,161)(134,162)(135,164)
(136,163)(137,157)(138,158)(139,160)(140,159)(141,165)(142,166)(143,168)
(144,167)(183,184)(185,189)(186,190)(187,192)(188,191)(193,209)(194,210)
(195,212)(196,211)(197,205)(198,206)(199,208)(200,207)(201,213)(202,214)
(203,216)(204,215);;
s2 := (  1,124)(  2,123)(  3,122)(  4,121)(  5,132)(  6,131)(  7,130)(  8,129)
(  9,128)( 10,127)( 11,126)( 12,125)( 13,112)( 14,111)( 15,110)( 16,109)
( 17,120)( 18,119)( 19,118)( 20,117)( 21,116)( 22,115)( 23,114)( 24,113)
( 25,140)( 26,139)( 27,138)( 28,137)( 29,136)( 30,135)( 31,134)( 32,133)
( 33,144)( 34,143)( 35,142)( 36,141)( 37,160)( 38,159)( 39,158)( 40,157)
( 41,168)( 42,167)( 43,166)( 44,165)( 45,164)( 46,163)( 47,162)( 48,161)
( 49,148)( 50,147)( 51,146)( 52,145)( 53,156)( 54,155)( 55,154)( 56,153)
( 57,152)( 58,151)( 59,150)( 60,149)( 61,176)( 62,175)( 63,174)( 64,173)
( 65,172)( 66,171)( 67,170)( 68,169)( 69,180)( 70,179)( 71,178)( 72,177)
( 73,196)( 74,195)( 75,194)( 76,193)( 77,204)( 78,203)( 79,202)( 80,201)
( 81,200)( 82,199)( 83,198)( 84,197)( 85,184)( 86,183)( 87,182)( 88,181)
( 89,192)( 90,191)( 91,190)( 92,189)( 93,188)( 94,187)( 95,186)( 96,185)
( 97,212)( 98,211)( 99,210)(100,209)(101,208)(102,207)(103,206)(104,205)
(105,216)(106,215)(107,214)(108,213);;
s3 := (217,218);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(218)!(  2,  3)(  6,  7)( 10, 11)( 14, 15)( 18, 19)( 22, 23)( 26, 27)
( 30, 31)( 34, 35)( 37, 73)( 38, 75)( 39, 74)( 40, 76)( 41, 77)( 42, 79)
( 43, 78)( 44, 80)( 45, 81)( 46, 83)( 47, 82)( 48, 84)( 49, 85)( 50, 87)
( 51, 86)( 52, 88)( 53, 89)( 54, 91)( 55, 90)( 56, 92)( 57, 93)( 58, 95)
( 59, 94)( 60, 96)( 61, 97)( 62, 99)( 63, 98)( 64,100)( 65,101)( 66,103)
( 67,102)( 68,104)( 69,105)( 70,107)( 71,106)( 72,108)(110,111)(114,115)
(118,119)(122,123)(126,127)(130,131)(134,135)(138,139)(142,143)(145,181)
(146,183)(147,182)(148,184)(149,185)(150,187)(151,186)(152,188)(153,189)
(154,191)(155,190)(156,192)(157,193)(158,195)(159,194)(160,196)(161,197)
(162,199)(163,198)(164,200)(165,201)(166,203)(167,202)(168,204)(169,205)
(170,207)(171,206)(172,208)(173,209)(174,211)(175,210)(176,212)(177,213)
(178,215)(179,214)(180,216);
s1 := Sym(218)!(  1, 37)(  2, 38)(  3, 40)(  4, 39)(  5, 45)(  6, 46)(  7, 48)
(  8, 47)(  9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 65)( 14, 66)( 15, 68)
( 16, 67)( 17, 61)( 18, 62)( 19, 64)( 20, 63)( 21, 69)( 22, 70)( 23, 72)
( 24, 71)( 25, 53)( 26, 54)( 27, 56)( 28, 55)( 29, 49)( 30, 50)( 31, 52)
( 32, 51)( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 75, 76)( 77, 81)( 78, 82)
( 79, 84)( 80, 83)( 85,101)( 86,102)( 87,104)( 88,103)( 89, 97)( 90, 98)
( 91,100)( 92, 99)( 93,105)( 94,106)( 95,108)( 96,107)(109,145)(110,146)
(111,148)(112,147)(113,153)(114,154)(115,156)(116,155)(117,149)(118,150)
(119,152)(120,151)(121,173)(122,174)(123,176)(124,175)(125,169)(126,170)
(127,172)(128,171)(129,177)(130,178)(131,180)(132,179)(133,161)(134,162)
(135,164)(136,163)(137,157)(138,158)(139,160)(140,159)(141,165)(142,166)
(143,168)(144,167)(183,184)(185,189)(186,190)(187,192)(188,191)(193,209)
(194,210)(195,212)(196,211)(197,205)(198,206)(199,208)(200,207)(201,213)
(202,214)(203,216)(204,215);
s2 := Sym(218)!(  1,124)(  2,123)(  3,122)(  4,121)(  5,132)(  6,131)(  7,130)
(  8,129)(  9,128)( 10,127)( 11,126)( 12,125)( 13,112)( 14,111)( 15,110)
( 16,109)( 17,120)( 18,119)( 19,118)( 20,117)( 21,116)( 22,115)( 23,114)
( 24,113)( 25,140)( 26,139)( 27,138)( 28,137)( 29,136)( 30,135)( 31,134)
( 32,133)( 33,144)( 34,143)( 35,142)( 36,141)( 37,160)( 38,159)( 39,158)
( 40,157)( 41,168)( 42,167)( 43,166)( 44,165)( 45,164)( 46,163)( 47,162)
( 48,161)( 49,148)( 50,147)( 51,146)( 52,145)( 53,156)( 54,155)( 55,154)
( 56,153)( 57,152)( 58,151)( 59,150)( 60,149)( 61,176)( 62,175)( 63,174)
( 64,173)( 65,172)( 66,171)( 67,170)( 68,169)( 69,180)( 70,179)( 71,178)
( 72,177)( 73,196)( 74,195)( 75,194)( 76,193)( 77,204)( 78,203)( 79,202)
( 80,201)( 81,200)( 82,199)( 83,198)( 84,197)( 85,184)( 86,183)( 87,182)
( 88,181)( 89,192)( 90,191)( 91,190)( 92,189)( 93,188)( 94,187)( 95,186)
( 96,185)( 97,212)( 98,211)( 99,210)(100,209)(101,208)(102,207)(103,206)
(104,205)(105,216)(106,215)(107,214)(108,213);
s3 := Sym(218)!(217,218);
poly := sub<Sym(218)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1 >; 
 

to this polytope