include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,2}*96c
if this polytope has a name.
Group : SmallGroup(96,226)
Rank : 4
Schlafli Type : {6,4,2}
Number of vertices, edges, etc : 6, 12, 4, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,4,2,2} of size 192
{6,4,2,3} of size 288
{6,4,2,4} of size 384
{6,4,2,5} of size 480
{6,4,2,6} of size 576
{6,4,2,7} of size 672
{6,4,2,8} of size 768
{6,4,2,9} of size 864
{6,4,2,10} of size 960
{6,4,2,11} of size 1056
{6,4,2,12} of size 1152
{6,4,2,13} of size 1248
{6,4,2,14} of size 1344
{6,4,2,15} of size 1440
{6,4,2,17} of size 1632
{6,4,2,18} of size 1728
{6,4,2,19} of size 1824
{6,4,2,20} of size 1920
Vertex Figure Of :
{2,6,4,2} of size 192
{4,6,4,2} of size 384
{4,6,4,2} of size 384
{4,6,4,2} of size 384
{6,6,4,2} of size 576
{6,6,4,2} of size 576
{8,6,4,2} of size 768
{4,6,4,2} of size 768
{6,6,4,2} of size 864
{10,6,4,2} of size 960
{12,6,4,2} of size 1152
{12,6,4,2} of size 1152
{12,6,4,2} of size 1152
{14,6,4,2} of size 1344
{18,6,4,2} of size 1728
{6,6,4,2} of size 1728
{6,6,4,2} of size 1728
{6,6,4,2} of size 1728
{20,6,4,2} of size 1920
{20,6,4,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,4,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,4,2}*192b, {12,4,2}*192c, {6,4,2}*192
3-fold covers : {18,4,2}*288b
4-fold covers : {6,4,4}*384b, {6,4,2}*384a, {24,4,2}*384c, {24,4,2}*384d, {12,4,2}*384b, {6,4,4}*384d, {6,4,2}*384b, {12,4,2}*384c, {6,8,2}*384b, {6,8,2}*384c
5-fold covers : {30,4,2}*480b
6-fold covers : {36,4,2}*576b, {36,4,2}*576c, {18,4,2}*576, {6,4,6}*576b, {6,12,2}*576a, {6,12,2}*576b
7-fold covers : {42,4,2}*672b
8-fold covers : {12,4,2}*768b, {12,4,2}*768c, {12,4,4}*768c, {12,4,4}*768d, {6,4,4}*768c, {6,8,2}*768b, {6,8,2}*768c, {48,4,2}*768c, {48,4,2}*768d, {12,4,2}*768d, {6,4,4}*768e, {12,4,4}*768e, {12,4,4}*768f, {6,8,2}*768d, {6,8,2}*768e, {6,4,4}*768f, {6,4,2}*768a, {12,8,2}*768e, {12,8,2}*768f, {24,4,2}*768c, {24,4,2}*768d, {6,8,4}*768c, {6,8,2}*768f, {12,8,2}*768g, {12,8,2}*768h, {6,4,8}*768c, {6,8,2}*768g, {6,8,4}*768d, {6,4,2}*768b, {24,4,2}*768e, {12,4,2}*768e, {24,4,2}*768f
9-fold covers : {54,4,2}*864b
10-fold covers : {60,4,2}*960b, {60,4,2}*960c, {6,4,10}*960, {6,20,2}*960c, {30,4,2}*960
11-fold covers : {66,4,2}*1056b
12-fold covers : {18,4,4}*1152b, {18,4,2}*1152a, {72,4,2}*1152c, {72,4,2}*1152d, {36,4,2}*1152b, {18,4,4}*1152d, {18,4,2}*1152b, {36,4,2}*1152c, {18,8,2}*1152b, {18,8,2}*1152c, {12,4,6}*1152b, {12,12,2}*1152d, {12,12,2}*1152e, {6,4,12}*1152c, {6,12,2}*1152b, {12,12,2}*1152h, {6,4,6}*1152b, {6,12,4}*1152i, {12,4,6}*1152d, {6,24,2}*1152b, {6,24,2}*1152c, {6,24,2}*1152d, {6,8,6}*1152b, {6,24,2}*1152e, {6,8,6}*1152d, {6,12,4}*1152j, {6,12,2}*1152f, {12,12,2}*1152j
13-fold covers : {78,4,2}*1248b
14-fold covers : {84,4,2}*1344b, {84,4,2}*1344c, {6,4,14}*1344, {6,28,2}*1344, {42,4,2}*1344
15-fold covers : {90,4,2}*1440b
17-fold covers : {102,4,2}*1632b
18-fold covers : {108,4,2}*1728b, {108,4,2}*1728c, {54,4,2}*1728, {6,4,18}*1728a, {6,36,2}*1728, {18,4,6}*1728b, {18,12,2}*1728a, {18,12,2}*1728b, {6,12,6}*1728b, {6,12,2}*1728a, {6,12,2}*1728b, {12,12,2}*1728n, {6,12,6}*1728i, {6,12,6}*1728j, {6,12,6}*1728k, {6,12,6}*1728l, {6,12,2}*1728c
19-fold covers : {114,4,2}*1824b
20-fold covers : {30,4,4}*1920b, {30,4,2}*1920a, {120,4,2}*1920c, {120,4,2}*1920d, {12,4,10}*1920b, {12,20,2}*1920b, {6,4,20}*1920b, {6,20,2}*1920a, {6,4,10}*1920, {6,20,4}*1920c, {12,4,10}*1920c, {6,40,2}*1920b, {6,8,10}*1920a, {6,40,2}*1920c, {6,8,10}*1920b, {12,20,2}*1920c, {60,4,2}*1920b, {30,4,4}*1920d, {30,4,2}*1920b, {60,4,2}*1920c, {30,8,2}*1920b, {30,8,2}*1920c
Permutation Representation (GAP) :
s0 := (1,4)(2,6);;
s1 := (1,2)(3,4)(5,6);;
s2 := (1,2)(4,6);;
s3 := (7,8);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s2*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(8)!(1,4)(2,6);
s1 := Sym(8)!(1,2)(3,4)(5,6);
s2 := Sym(8)!(1,2)(4,6);
s3 := Sym(8)!(7,8);
poly := sub<Sym(8)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope