Polytope of Type {4,18,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,18,6}*1728b
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 4
Schlafli Type : {4,18,6}
Number of vertices, edges, etc : 8, 72, 108, 6
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,9,6}*864, {4,18,6}*864d, {4,18,6}*864e
   3-fold quotients : {4,18,2}*576, {4,6,6}*576b
   4-fold quotients : {4,9,6}*432, {2,18,6}*432b
   6-fold quotients : {4,9,2}*288, {4,18,2}*288b, {4,18,2}*288c, {4,3,6}*288, {4,6,6}*288e, {4,6,6}*288f
   8-fold quotients : {2,9,6}*216
   9-fold quotients : {4,6,2}*192
   12-fold quotients : {4,9,2}*144, {2,18,2}*144, {4,3,6}*144, {2,6,6}*144c
   18-fold quotients : {4,3,2}*96, {4,6,2}*96b, {4,6,2}*96c
   24-fold quotients : {2,9,2}*72, {2,3,6}*72
   36-fold quotients : {4,3,2}*48, {2,6,2}*48
   72-fold quotients : {2,3,2}*24
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,219)(  2,220)(  3,217)(  4,218)(  5,223)(  6,224)(  7,221)(  8,222)
(  9,227)( 10,228)( 11,225)( 12,226)( 13,231)( 14,232)( 15,229)( 16,230)
( 17,235)( 18,236)( 19,233)( 20,234)( 21,239)( 22,240)( 23,237)( 24,238)
( 25,243)( 26,244)( 27,241)( 28,242)( 29,247)( 30,248)( 31,245)( 32,246)
( 33,251)( 34,252)( 35,249)( 36,250)( 37,255)( 38,256)( 39,253)( 40,254)
( 41,259)( 42,260)( 43,257)( 44,258)( 45,263)( 46,264)( 47,261)( 48,262)
( 49,267)( 50,268)( 51,265)( 52,266)( 53,271)( 54,272)( 55,269)( 56,270)
( 57,275)( 58,276)( 59,273)( 60,274)( 61,279)( 62,280)( 63,277)( 64,278)
( 65,283)( 66,284)( 67,281)( 68,282)( 69,287)( 70,288)( 71,285)( 72,286)
( 73,291)( 74,292)( 75,289)( 76,290)( 77,295)( 78,296)( 79,293)( 80,294)
( 81,299)( 82,300)( 83,297)( 84,298)( 85,303)( 86,304)( 87,301)( 88,302)
( 89,307)( 90,308)( 91,305)( 92,306)( 93,311)( 94,312)( 95,309)( 96,310)
( 97,315)( 98,316)( 99,313)(100,314)(101,319)(102,320)(103,317)(104,318)
(105,323)(106,324)(107,321)(108,322)(109,327)(110,328)(111,325)(112,326)
(113,331)(114,332)(115,329)(116,330)(117,335)(118,336)(119,333)(120,334)
(121,339)(122,340)(123,337)(124,338)(125,343)(126,344)(127,341)(128,342)
(129,347)(130,348)(131,345)(132,346)(133,351)(134,352)(135,349)(136,350)
(137,355)(138,356)(139,353)(140,354)(141,359)(142,360)(143,357)(144,358)
(145,363)(146,364)(147,361)(148,362)(149,367)(150,368)(151,365)(152,366)
(153,371)(154,372)(155,369)(156,370)(157,375)(158,376)(159,373)(160,374)
(161,379)(162,380)(163,377)(164,378)(165,383)(166,384)(167,381)(168,382)
(169,387)(170,388)(171,385)(172,386)(173,391)(174,392)(175,389)(176,390)
(177,395)(178,396)(179,393)(180,394)(181,399)(182,400)(183,397)(184,398)
(185,403)(186,404)(187,401)(188,402)(189,407)(190,408)(191,405)(192,406)
(193,411)(194,412)(195,409)(196,410)(197,415)(198,416)(199,413)(200,414)
(201,419)(202,420)(203,417)(204,418)(205,423)(206,424)(207,421)(208,422)
(209,427)(210,428)(211,425)(212,426)(213,431)(214,432)(215,429)(216,430);;
s1 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 25)( 14, 26)( 15, 28)
( 16, 27)( 17, 33)( 18, 34)( 19, 36)( 20, 35)( 21, 29)( 22, 30)( 23, 32)
( 24, 31)( 37, 81)( 38, 82)( 39, 84)( 40, 83)( 41, 77)( 42, 78)( 43, 80)
( 44, 79)( 45, 73)( 46, 74)( 47, 76)( 48, 75)( 49,105)( 50,106)( 51,108)
( 52,107)( 53,101)( 54,102)( 55,104)( 56,103)( 57, 97)( 58, 98)( 59,100)
( 60, 99)( 61, 93)( 62, 94)( 63, 96)( 64, 95)( 65, 89)( 66, 90)( 67, 92)
( 68, 91)( 69, 85)( 70, 86)( 71, 88)( 72, 87)(111,112)(113,117)(114,118)
(115,120)(116,119)(121,133)(122,134)(123,136)(124,135)(125,141)(126,142)
(127,144)(128,143)(129,137)(130,138)(131,140)(132,139)(145,189)(146,190)
(147,192)(148,191)(149,185)(150,186)(151,188)(152,187)(153,181)(154,182)
(155,184)(156,183)(157,213)(158,214)(159,216)(160,215)(161,209)(162,210)
(163,212)(164,211)(165,205)(166,206)(167,208)(168,207)(169,201)(170,202)
(171,204)(172,203)(173,197)(174,198)(175,200)(176,199)(177,193)(178,194)
(179,196)(180,195)(219,220)(221,225)(222,226)(223,228)(224,227)(229,241)
(230,242)(231,244)(232,243)(233,249)(234,250)(235,252)(236,251)(237,245)
(238,246)(239,248)(240,247)(253,297)(254,298)(255,300)(256,299)(257,293)
(258,294)(259,296)(260,295)(261,289)(262,290)(263,292)(264,291)(265,321)
(266,322)(267,324)(268,323)(269,317)(270,318)(271,320)(272,319)(273,313)
(274,314)(275,316)(276,315)(277,309)(278,310)(279,312)(280,311)(281,305)
(282,306)(283,308)(284,307)(285,301)(286,302)(287,304)(288,303)(327,328)
(329,333)(330,334)(331,336)(332,335)(337,349)(338,350)(339,352)(340,351)
(341,357)(342,358)(343,360)(344,359)(345,353)(346,354)(347,356)(348,355)
(361,405)(362,406)(363,408)(364,407)(365,401)(366,402)(367,404)(368,403)
(369,397)(370,398)(371,400)(372,399)(373,429)(374,430)(375,432)(376,431)
(377,425)(378,426)(379,428)(380,427)(381,421)(382,422)(383,424)(384,423)
(385,417)(386,418)(387,420)(388,419)(389,413)(390,414)(391,416)(392,415)
(393,409)(394,410)(395,412)(396,411);;
s2 := (  1,157)(  2,160)(  3,159)(  4,158)(  5,165)(  6,168)(  7,167)(  8,166)
(  9,161)( 10,164)( 11,163)( 12,162)( 13,145)( 14,148)( 15,147)( 16,146)
( 17,153)( 18,156)( 19,155)( 20,154)( 21,149)( 22,152)( 23,151)( 24,150)
( 25,169)( 26,172)( 27,171)( 28,170)( 29,177)( 30,180)( 31,179)( 32,178)
( 33,173)( 34,176)( 35,175)( 36,174)( 37,121)( 38,124)( 39,123)( 40,122)
( 41,129)( 42,132)( 43,131)( 44,130)( 45,125)( 46,128)( 47,127)( 48,126)
( 49,109)( 50,112)( 51,111)( 52,110)( 53,117)( 54,120)( 55,119)( 56,118)
( 57,113)( 58,116)( 59,115)( 60,114)( 61,133)( 62,136)( 63,135)( 64,134)
( 65,141)( 66,144)( 67,143)( 68,142)( 69,137)( 70,140)( 71,139)( 72,138)
( 73,201)( 74,204)( 75,203)( 76,202)( 77,197)( 78,200)( 79,199)( 80,198)
( 81,193)( 82,196)( 83,195)( 84,194)( 85,189)( 86,192)( 87,191)( 88,190)
( 89,185)( 90,188)( 91,187)( 92,186)( 93,181)( 94,184)( 95,183)( 96,182)
( 97,213)( 98,216)( 99,215)(100,214)(101,209)(102,212)(103,211)(104,210)
(105,205)(106,208)(107,207)(108,206)(217,373)(218,376)(219,375)(220,374)
(221,381)(222,384)(223,383)(224,382)(225,377)(226,380)(227,379)(228,378)
(229,361)(230,364)(231,363)(232,362)(233,369)(234,372)(235,371)(236,370)
(237,365)(238,368)(239,367)(240,366)(241,385)(242,388)(243,387)(244,386)
(245,393)(246,396)(247,395)(248,394)(249,389)(250,392)(251,391)(252,390)
(253,337)(254,340)(255,339)(256,338)(257,345)(258,348)(259,347)(260,346)
(261,341)(262,344)(263,343)(264,342)(265,325)(266,328)(267,327)(268,326)
(269,333)(270,336)(271,335)(272,334)(273,329)(274,332)(275,331)(276,330)
(277,349)(278,352)(279,351)(280,350)(281,357)(282,360)(283,359)(284,358)
(285,353)(286,356)(287,355)(288,354)(289,417)(290,420)(291,419)(292,418)
(293,413)(294,416)(295,415)(296,414)(297,409)(298,412)(299,411)(300,410)
(301,405)(302,408)(303,407)(304,406)(305,401)(306,404)(307,403)(308,402)
(309,397)(310,400)(311,399)(312,398)(313,429)(314,432)(315,431)(316,430)
(317,425)(318,428)(319,427)(320,426)(321,421)(322,424)(323,423)(324,422);;
s3 := ( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)( 20, 32)
( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)( 52, 64)
( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)( 60, 72)
( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)( 92,104)
( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)(124,136)
(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)(132,144)
(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)(164,176)
(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)(196,208)
(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)(204,216)
(229,241)(230,242)(231,243)(232,244)(233,245)(234,246)(235,247)(236,248)
(237,249)(238,250)(239,251)(240,252)(265,277)(266,278)(267,279)(268,280)
(269,281)(270,282)(271,283)(272,284)(273,285)(274,286)(275,287)(276,288)
(301,313)(302,314)(303,315)(304,316)(305,317)(306,318)(307,319)(308,320)
(309,321)(310,322)(311,323)(312,324)(337,349)(338,350)(339,351)(340,352)
(341,353)(342,354)(343,355)(344,356)(345,357)(346,358)(347,359)(348,360)
(373,385)(374,386)(375,387)(376,388)(377,389)(378,390)(379,391)(380,392)
(381,393)(382,394)(383,395)(384,396)(409,421)(410,422)(411,423)(412,424)
(413,425)(414,426)(415,427)(416,428)(417,429)(418,430)(419,431)(420,432);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!(  1,219)(  2,220)(  3,217)(  4,218)(  5,223)(  6,224)(  7,221)
(  8,222)(  9,227)( 10,228)( 11,225)( 12,226)( 13,231)( 14,232)( 15,229)
( 16,230)( 17,235)( 18,236)( 19,233)( 20,234)( 21,239)( 22,240)( 23,237)
( 24,238)( 25,243)( 26,244)( 27,241)( 28,242)( 29,247)( 30,248)( 31,245)
( 32,246)( 33,251)( 34,252)( 35,249)( 36,250)( 37,255)( 38,256)( 39,253)
( 40,254)( 41,259)( 42,260)( 43,257)( 44,258)( 45,263)( 46,264)( 47,261)
( 48,262)( 49,267)( 50,268)( 51,265)( 52,266)( 53,271)( 54,272)( 55,269)
( 56,270)( 57,275)( 58,276)( 59,273)( 60,274)( 61,279)( 62,280)( 63,277)
( 64,278)( 65,283)( 66,284)( 67,281)( 68,282)( 69,287)( 70,288)( 71,285)
( 72,286)( 73,291)( 74,292)( 75,289)( 76,290)( 77,295)( 78,296)( 79,293)
( 80,294)( 81,299)( 82,300)( 83,297)( 84,298)( 85,303)( 86,304)( 87,301)
( 88,302)( 89,307)( 90,308)( 91,305)( 92,306)( 93,311)( 94,312)( 95,309)
( 96,310)( 97,315)( 98,316)( 99,313)(100,314)(101,319)(102,320)(103,317)
(104,318)(105,323)(106,324)(107,321)(108,322)(109,327)(110,328)(111,325)
(112,326)(113,331)(114,332)(115,329)(116,330)(117,335)(118,336)(119,333)
(120,334)(121,339)(122,340)(123,337)(124,338)(125,343)(126,344)(127,341)
(128,342)(129,347)(130,348)(131,345)(132,346)(133,351)(134,352)(135,349)
(136,350)(137,355)(138,356)(139,353)(140,354)(141,359)(142,360)(143,357)
(144,358)(145,363)(146,364)(147,361)(148,362)(149,367)(150,368)(151,365)
(152,366)(153,371)(154,372)(155,369)(156,370)(157,375)(158,376)(159,373)
(160,374)(161,379)(162,380)(163,377)(164,378)(165,383)(166,384)(167,381)
(168,382)(169,387)(170,388)(171,385)(172,386)(173,391)(174,392)(175,389)
(176,390)(177,395)(178,396)(179,393)(180,394)(181,399)(182,400)(183,397)
(184,398)(185,403)(186,404)(187,401)(188,402)(189,407)(190,408)(191,405)
(192,406)(193,411)(194,412)(195,409)(196,410)(197,415)(198,416)(199,413)
(200,414)(201,419)(202,420)(203,417)(204,418)(205,423)(206,424)(207,421)
(208,422)(209,427)(210,428)(211,425)(212,426)(213,431)(214,432)(215,429)
(216,430);
s1 := Sym(432)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 25)( 14, 26)
( 15, 28)( 16, 27)( 17, 33)( 18, 34)( 19, 36)( 20, 35)( 21, 29)( 22, 30)
( 23, 32)( 24, 31)( 37, 81)( 38, 82)( 39, 84)( 40, 83)( 41, 77)( 42, 78)
( 43, 80)( 44, 79)( 45, 73)( 46, 74)( 47, 76)( 48, 75)( 49,105)( 50,106)
( 51,108)( 52,107)( 53,101)( 54,102)( 55,104)( 56,103)( 57, 97)( 58, 98)
( 59,100)( 60, 99)( 61, 93)( 62, 94)( 63, 96)( 64, 95)( 65, 89)( 66, 90)
( 67, 92)( 68, 91)( 69, 85)( 70, 86)( 71, 88)( 72, 87)(111,112)(113,117)
(114,118)(115,120)(116,119)(121,133)(122,134)(123,136)(124,135)(125,141)
(126,142)(127,144)(128,143)(129,137)(130,138)(131,140)(132,139)(145,189)
(146,190)(147,192)(148,191)(149,185)(150,186)(151,188)(152,187)(153,181)
(154,182)(155,184)(156,183)(157,213)(158,214)(159,216)(160,215)(161,209)
(162,210)(163,212)(164,211)(165,205)(166,206)(167,208)(168,207)(169,201)
(170,202)(171,204)(172,203)(173,197)(174,198)(175,200)(176,199)(177,193)
(178,194)(179,196)(180,195)(219,220)(221,225)(222,226)(223,228)(224,227)
(229,241)(230,242)(231,244)(232,243)(233,249)(234,250)(235,252)(236,251)
(237,245)(238,246)(239,248)(240,247)(253,297)(254,298)(255,300)(256,299)
(257,293)(258,294)(259,296)(260,295)(261,289)(262,290)(263,292)(264,291)
(265,321)(266,322)(267,324)(268,323)(269,317)(270,318)(271,320)(272,319)
(273,313)(274,314)(275,316)(276,315)(277,309)(278,310)(279,312)(280,311)
(281,305)(282,306)(283,308)(284,307)(285,301)(286,302)(287,304)(288,303)
(327,328)(329,333)(330,334)(331,336)(332,335)(337,349)(338,350)(339,352)
(340,351)(341,357)(342,358)(343,360)(344,359)(345,353)(346,354)(347,356)
(348,355)(361,405)(362,406)(363,408)(364,407)(365,401)(366,402)(367,404)
(368,403)(369,397)(370,398)(371,400)(372,399)(373,429)(374,430)(375,432)
(376,431)(377,425)(378,426)(379,428)(380,427)(381,421)(382,422)(383,424)
(384,423)(385,417)(386,418)(387,420)(388,419)(389,413)(390,414)(391,416)
(392,415)(393,409)(394,410)(395,412)(396,411);
s2 := Sym(432)!(  1,157)(  2,160)(  3,159)(  4,158)(  5,165)(  6,168)(  7,167)
(  8,166)(  9,161)( 10,164)( 11,163)( 12,162)( 13,145)( 14,148)( 15,147)
( 16,146)( 17,153)( 18,156)( 19,155)( 20,154)( 21,149)( 22,152)( 23,151)
( 24,150)( 25,169)( 26,172)( 27,171)( 28,170)( 29,177)( 30,180)( 31,179)
( 32,178)( 33,173)( 34,176)( 35,175)( 36,174)( 37,121)( 38,124)( 39,123)
( 40,122)( 41,129)( 42,132)( 43,131)( 44,130)( 45,125)( 46,128)( 47,127)
( 48,126)( 49,109)( 50,112)( 51,111)( 52,110)( 53,117)( 54,120)( 55,119)
( 56,118)( 57,113)( 58,116)( 59,115)( 60,114)( 61,133)( 62,136)( 63,135)
( 64,134)( 65,141)( 66,144)( 67,143)( 68,142)( 69,137)( 70,140)( 71,139)
( 72,138)( 73,201)( 74,204)( 75,203)( 76,202)( 77,197)( 78,200)( 79,199)
( 80,198)( 81,193)( 82,196)( 83,195)( 84,194)( 85,189)( 86,192)( 87,191)
( 88,190)( 89,185)( 90,188)( 91,187)( 92,186)( 93,181)( 94,184)( 95,183)
( 96,182)( 97,213)( 98,216)( 99,215)(100,214)(101,209)(102,212)(103,211)
(104,210)(105,205)(106,208)(107,207)(108,206)(217,373)(218,376)(219,375)
(220,374)(221,381)(222,384)(223,383)(224,382)(225,377)(226,380)(227,379)
(228,378)(229,361)(230,364)(231,363)(232,362)(233,369)(234,372)(235,371)
(236,370)(237,365)(238,368)(239,367)(240,366)(241,385)(242,388)(243,387)
(244,386)(245,393)(246,396)(247,395)(248,394)(249,389)(250,392)(251,391)
(252,390)(253,337)(254,340)(255,339)(256,338)(257,345)(258,348)(259,347)
(260,346)(261,341)(262,344)(263,343)(264,342)(265,325)(266,328)(267,327)
(268,326)(269,333)(270,336)(271,335)(272,334)(273,329)(274,332)(275,331)
(276,330)(277,349)(278,352)(279,351)(280,350)(281,357)(282,360)(283,359)
(284,358)(285,353)(286,356)(287,355)(288,354)(289,417)(290,420)(291,419)
(292,418)(293,413)(294,416)(295,415)(296,414)(297,409)(298,412)(299,411)
(300,410)(301,405)(302,408)(303,407)(304,406)(305,401)(306,404)(307,403)
(308,402)(309,397)(310,400)(311,399)(312,398)(313,429)(314,432)(315,431)
(316,430)(317,425)(318,428)(319,427)(320,426)(321,421)(322,424)(323,423)
(324,422);
s3 := Sym(432)!( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)
( 20, 32)( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)
( 52, 64)( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)
( 60, 72)( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)
( 92,104)( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)
(124,136)(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)
(132,144)(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)
(164,176)(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)
(196,208)(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)
(204,216)(229,241)(230,242)(231,243)(232,244)(233,245)(234,246)(235,247)
(236,248)(237,249)(238,250)(239,251)(240,252)(265,277)(266,278)(267,279)
(268,280)(269,281)(270,282)(271,283)(272,284)(273,285)(274,286)(275,287)
(276,288)(301,313)(302,314)(303,315)(304,316)(305,317)(306,318)(307,319)
(308,320)(309,321)(310,322)(311,323)(312,324)(337,349)(338,350)(339,351)
(340,352)(341,353)(342,354)(343,355)(344,356)(345,357)(346,358)(347,359)
(348,360)(373,385)(374,386)(375,387)(376,388)(377,389)(378,390)(379,391)
(380,392)(381,393)(382,394)(383,395)(384,396)(409,421)(410,422)(411,423)
(412,424)(413,425)(414,426)(415,427)(416,428)(417,429)(418,430)(419,431)
(420,432);
poly := sub<Sym(432)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope