Polytope of Type {4,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,6}*576b
if this polytope has a name.
Group : SmallGroup(576,8659)
Rank : 4
Schlafli Type : {4,6,6}
Number of vertices, edges, etc : 8, 24, 36, 6
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,6,6,2} of size 1152
   {4,6,6,3} of size 1728
Vertex Figure Of :
   {2,4,6,6} of size 1152
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,3,6}*288, {4,6,6}*288e, {4,6,6}*288f
   3-fold quotients : {4,6,2}*192
   4-fold quotients : {4,3,6}*144, {2,6,6}*144c
   6-fold quotients : {4,3,2}*96, {4,6,2}*96b, {4,6,2}*96c
   8-fold quotients : {2,3,6}*72
   12-fold quotients : {4,3,2}*48, {2,6,2}*48
   24-fold quotients : {2,3,2}*24
   36-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,12,6}*1152f, {4,6,6}*1152e, {4,12,6}*1152i, {8,6,6}*1152c, {8,6,6}*1152e, {4,6,12}*1152d
   3-fold covers : {4,18,6}*1728b, {4,6,6}*1728a, {4,6,6}*1728c, {12,6,6}*1728c, {12,6,6}*1728d
Permutation Representation (GAP) :
s0 := (  1, 75)(  2, 76)(  3, 73)(  4, 74)(  5, 79)(  6, 80)(  7, 77)(  8, 78)
(  9, 83)( 10, 84)( 11, 81)( 12, 82)( 13, 87)( 14, 88)( 15, 85)( 16, 86)
( 17, 91)( 18, 92)( 19, 89)( 20, 90)( 21, 95)( 22, 96)( 23, 93)( 24, 94)
( 25, 99)( 26,100)( 27, 97)( 28, 98)( 29,103)( 30,104)( 31,101)( 32,102)
( 33,107)( 34,108)( 35,105)( 36,106)( 37,111)( 38,112)( 39,109)( 40,110)
( 41,115)( 42,116)( 43,113)( 44,114)( 45,119)( 46,120)( 47,117)( 48,118)
( 49,123)( 50,124)( 51,121)( 52,122)( 53,127)( 54,128)( 55,125)( 56,126)
( 57,131)( 58,132)( 59,129)( 60,130)( 61,135)( 62,136)( 63,133)( 64,134)
( 65,139)( 66,140)( 67,137)( 68,138)( 69,143)( 70,144)( 71,141)( 72,142);;
s1 := (  2,  3)(  5,  9)(  6, 11)(  7, 10)(  8, 12)( 13, 25)( 14, 27)( 15, 26)
( 16, 28)( 17, 33)( 18, 35)( 19, 34)( 20, 36)( 21, 29)( 22, 31)( 23, 30)
( 24, 32)( 38, 39)( 41, 45)( 42, 47)( 43, 46)( 44, 48)( 49, 61)( 50, 63)
( 51, 62)( 52, 64)( 53, 69)( 54, 71)( 55, 70)( 56, 72)( 57, 65)( 58, 67)
( 59, 66)( 60, 68)( 74, 75)( 77, 81)( 78, 83)( 79, 82)( 80, 84)( 85, 97)
( 86, 99)( 87, 98)( 88,100)( 89,105)( 90,107)( 91,106)( 92,108)( 93,101)
( 94,103)( 95,102)( 96,104)(110,111)(113,117)(114,119)(115,118)(116,120)
(121,133)(122,135)(123,134)(124,136)(125,141)(126,143)(127,142)(128,144)
(129,137)(130,139)(131,138)(132,140);;
s2 := (  1, 65)(  2, 68)(  3, 67)(  4, 66)(  5, 61)(  6, 64)(  7, 63)(  8, 62)
(  9, 69)( 10, 72)( 11, 71)( 12, 70)( 13, 53)( 14, 56)( 15, 55)( 16, 54)
( 17, 49)( 18, 52)( 19, 51)( 20, 50)( 21, 57)( 22, 60)( 23, 59)( 24, 58)
( 25, 41)( 26, 44)( 27, 43)( 28, 42)( 29, 37)( 30, 40)( 31, 39)( 32, 38)
( 33, 45)( 34, 48)( 35, 47)( 36, 46)( 73,137)( 74,140)( 75,139)( 76,138)
( 77,133)( 78,136)( 79,135)( 80,134)( 81,141)( 82,144)( 83,143)( 84,142)
( 85,125)( 86,128)( 87,127)( 88,126)( 89,121)( 90,124)( 91,123)( 92,122)
( 93,129)( 94,132)( 95,131)( 96,130)( 97,113)( 98,116)( 99,115)(100,114)
(101,109)(102,112)(103,111)(104,110)(105,117)(106,120)(107,119)(108,118);;
s3 := (  5,  9)(  6, 10)(  7, 11)(  8, 12)( 17, 21)( 18, 22)( 19, 23)( 20, 24)
( 29, 33)( 30, 34)( 31, 35)( 32, 36)( 41, 45)( 42, 46)( 43, 47)( 44, 48)
( 53, 57)( 54, 58)( 55, 59)( 56, 60)( 65, 69)( 66, 70)( 67, 71)( 68, 72)
( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 89, 93)( 90, 94)( 91, 95)( 92, 96)
(101,105)(102,106)(103,107)(104,108)(113,117)(114,118)(115,119)(116,120)
(125,129)(126,130)(127,131)(128,132)(137,141)(138,142)(139,143)(140,144);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(144)!(  1, 75)(  2, 76)(  3, 73)(  4, 74)(  5, 79)(  6, 80)(  7, 77)
(  8, 78)(  9, 83)( 10, 84)( 11, 81)( 12, 82)( 13, 87)( 14, 88)( 15, 85)
( 16, 86)( 17, 91)( 18, 92)( 19, 89)( 20, 90)( 21, 95)( 22, 96)( 23, 93)
( 24, 94)( 25, 99)( 26,100)( 27, 97)( 28, 98)( 29,103)( 30,104)( 31,101)
( 32,102)( 33,107)( 34,108)( 35,105)( 36,106)( 37,111)( 38,112)( 39,109)
( 40,110)( 41,115)( 42,116)( 43,113)( 44,114)( 45,119)( 46,120)( 47,117)
( 48,118)( 49,123)( 50,124)( 51,121)( 52,122)( 53,127)( 54,128)( 55,125)
( 56,126)( 57,131)( 58,132)( 59,129)( 60,130)( 61,135)( 62,136)( 63,133)
( 64,134)( 65,139)( 66,140)( 67,137)( 68,138)( 69,143)( 70,144)( 71,141)
( 72,142);
s1 := Sym(144)!(  2,  3)(  5,  9)(  6, 11)(  7, 10)(  8, 12)( 13, 25)( 14, 27)
( 15, 26)( 16, 28)( 17, 33)( 18, 35)( 19, 34)( 20, 36)( 21, 29)( 22, 31)
( 23, 30)( 24, 32)( 38, 39)( 41, 45)( 42, 47)( 43, 46)( 44, 48)( 49, 61)
( 50, 63)( 51, 62)( 52, 64)( 53, 69)( 54, 71)( 55, 70)( 56, 72)( 57, 65)
( 58, 67)( 59, 66)( 60, 68)( 74, 75)( 77, 81)( 78, 83)( 79, 82)( 80, 84)
( 85, 97)( 86, 99)( 87, 98)( 88,100)( 89,105)( 90,107)( 91,106)( 92,108)
( 93,101)( 94,103)( 95,102)( 96,104)(110,111)(113,117)(114,119)(115,118)
(116,120)(121,133)(122,135)(123,134)(124,136)(125,141)(126,143)(127,142)
(128,144)(129,137)(130,139)(131,138)(132,140);
s2 := Sym(144)!(  1, 65)(  2, 68)(  3, 67)(  4, 66)(  5, 61)(  6, 64)(  7, 63)
(  8, 62)(  9, 69)( 10, 72)( 11, 71)( 12, 70)( 13, 53)( 14, 56)( 15, 55)
( 16, 54)( 17, 49)( 18, 52)( 19, 51)( 20, 50)( 21, 57)( 22, 60)( 23, 59)
( 24, 58)( 25, 41)( 26, 44)( 27, 43)( 28, 42)( 29, 37)( 30, 40)( 31, 39)
( 32, 38)( 33, 45)( 34, 48)( 35, 47)( 36, 46)( 73,137)( 74,140)( 75,139)
( 76,138)( 77,133)( 78,136)( 79,135)( 80,134)( 81,141)( 82,144)( 83,143)
( 84,142)( 85,125)( 86,128)( 87,127)( 88,126)( 89,121)( 90,124)( 91,123)
( 92,122)( 93,129)( 94,132)( 95,131)( 96,130)( 97,113)( 98,116)( 99,115)
(100,114)(101,109)(102,112)(103,111)(104,110)(105,117)(106,120)(107,119)
(108,118);
s3 := Sym(144)!(  5,  9)(  6, 10)(  7, 11)(  8, 12)( 17, 21)( 18, 22)( 19, 23)
( 20, 24)( 29, 33)( 30, 34)( 31, 35)( 32, 36)( 41, 45)( 42, 46)( 43, 47)
( 44, 48)( 53, 57)( 54, 58)( 55, 59)( 56, 60)( 65, 69)( 66, 70)( 67, 71)
( 68, 72)( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 89, 93)( 90, 94)( 91, 95)
( 92, 96)(101,105)(102,106)(103,107)(104,108)(113,117)(114,118)(115,119)
(116,120)(125,129)(126,130)(127,131)(128,132)(137,141)(138,142)(139,143)
(140,144);
poly := sub<Sym(144)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2 >; 
 
References : None.
to this polytope