include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,18,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,18,4}*1728a
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 4
Schlafli Type : {6,18,4}
Number of vertices, edges, etc : 6, 108, 72, 8
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,18,4}*864c
3-fold quotients : {2,18,4}*576, {6,6,4}*576a
4-fold quotients : {6,18,2}*432a
6-fold quotients : {2,9,4}*288, {2,18,4}*288b, {2,18,4}*288c, {6,6,4}*288d
9-fold quotients : {2,6,4}*192
12-fold quotients : {2,9,4}*144, {2,18,2}*144, {6,6,2}*144a
18-fold quotients : {2,3,4}*96, {2,6,4}*96b, {2,6,4}*96c
24-fold quotients : {2,9,2}*72
36-fold quotients : {2,3,4}*48, {2,6,2}*48, {6,2,2}*48
72-fold quotients : {2,3,2}*24, {3,2,2}*24
108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)( 20, 32)
( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)( 52, 64)
( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)( 60, 72)
( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)( 92,104)
( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)(124,136)
(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)(132,144)
(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)(164,176)
(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)(196,208)
(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)(204,216)
(229,241)(230,242)(231,243)(232,244)(233,245)(234,246)(235,247)(236,248)
(237,249)(238,250)(239,251)(240,252)(265,277)(266,278)(267,279)(268,280)
(269,281)(270,282)(271,283)(272,284)(273,285)(274,286)(275,287)(276,288)
(301,313)(302,314)(303,315)(304,316)(305,317)(306,318)(307,319)(308,320)
(309,321)(310,322)(311,323)(312,324)(337,349)(338,350)(339,351)(340,352)
(341,353)(342,354)(343,355)(344,356)(345,357)(346,358)(347,359)(348,360)
(373,385)(374,386)(375,387)(376,388)(377,389)(378,390)(379,391)(380,392)
(381,393)(382,394)(383,395)(384,396)(409,421)(410,422)(411,423)(412,424)
(413,425)(414,426)(415,427)(416,428)(417,429)(418,430)(419,431)(420,432);;
s1 := ( 1, 13)( 2, 14)( 3, 16)( 4, 15)( 5, 21)( 6, 22)( 7, 24)( 8, 23)
( 9, 17)( 10, 18)( 11, 20)( 12, 19)( 27, 28)( 29, 33)( 30, 34)( 31, 36)
( 32, 35)( 37, 93)( 38, 94)( 39, 96)( 40, 95)( 41, 89)( 42, 90)( 43, 92)
( 44, 91)( 45, 85)( 46, 86)( 47, 88)( 48, 87)( 49, 81)( 50, 82)( 51, 84)
( 52, 83)( 53, 77)( 54, 78)( 55, 80)( 56, 79)( 57, 73)( 58, 74)( 59, 76)
( 60, 75)( 61,105)( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)( 67,104)
( 68,103)( 69, 97)( 70, 98)( 71,100)( 72, 99)(109,121)(110,122)(111,124)
(112,123)(113,129)(114,130)(115,132)(116,131)(117,125)(118,126)(119,128)
(120,127)(135,136)(137,141)(138,142)(139,144)(140,143)(145,201)(146,202)
(147,204)(148,203)(149,197)(150,198)(151,200)(152,199)(153,193)(154,194)
(155,196)(156,195)(157,189)(158,190)(159,192)(160,191)(161,185)(162,186)
(163,188)(164,187)(165,181)(166,182)(167,184)(168,183)(169,213)(170,214)
(171,216)(172,215)(173,209)(174,210)(175,212)(176,211)(177,205)(178,206)
(179,208)(180,207)(217,229)(218,230)(219,232)(220,231)(221,237)(222,238)
(223,240)(224,239)(225,233)(226,234)(227,236)(228,235)(243,244)(245,249)
(246,250)(247,252)(248,251)(253,309)(254,310)(255,312)(256,311)(257,305)
(258,306)(259,308)(260,307)(261,301)(262,302)(263,304)(264,303)(265,297)
(266,298)(267,300)(268,299)(269,293)(270,294)(271,296)(272,295)(273,289)
(274,290)(275,292)(276,291)(277,321)(278,322)(279,324)(280,323)(281,317)
(282,318)(283,320)(284,319)(285,313)(286,314)(287,316)(288,315)(325,337)
(326,338)(327,340)(328,339)(329,345)(330,346)(331,348)(332,347)(333,341)
(334,342)(335,344)(336,343)(351,352)(353,357)(354,358)(355,360)(356,359)
(361,417)(362,418)(363,420)(364,419)(365,413)(366,414)(367,416)(368,415)
(369,409)(370,410)(371,412)(372,411)(373,405)(374,406)(375,408)(376,407)
(377,401)(378,402)(379,404)(380,403)(381,397)(382,398)(383,400)(384,399)
(385,429)(386,430)(387,432)(388,431)(389,425)(390,426)(391,428)(392,427)
(393,421)(394,422)(395,424)(396,423);;
s2 := ( 1,253)( 2,256)( 3,255)( 4,254)( 5,261)( 6,264)( 7,263)( 8,262)
( 9,257)( 10,260)( 11,259)( 12,258)( 13,265)( 14,268)( 15,267)( 16,266)
( 17,273)( 18,276)( 19,275)( 20,274)( 21,269)( 22,272)( 23,271)( 24,270)
( 25,277)( 26,280)( 27,279)( 28,278)( 29,285)( 30,288)( 31,287)( 32,286)
( 33,281)( 34,284)( 35,283)( 36,282)( 37,217)( 38,220)( 39,219)( 40,218)
( 41,225)( 42,228)( 43,227)( 44,226)( 45,221)( 46,224)( 47,223)( 48,222)
( 49,229)( 50,232)( 51,231)( 52,230)( 53,237)( 54,240)( 55,239)( 56,238)
( 57,233)( 58,236)( 59,235)( 60,234)( 61,241)( 62,244)( 63,243)( 64,242)
( 65,249)( 66,252)( 67,251)( 68,250)( 69,245)( 70,248)( 71,247)( 72,246)
( 73,297)( 74,300)( 75,299)( 76,298)( 77,293)( 78,296)( 79,295)( 80,294)
( 81,289)( 82,292)( 83,291)( 84,290)( 85,309)( 86,312)( 87,311)( 88,310)
( 89,305)( 90,308)( 91,307)( 92,306)( 93,301)( 94,304)( 95,303)( 96,302)
( 97,321)( 98,324)( 99,323)(100,322)(101,317)(102,320)(103,319)(104,318)
(105,313)(106,316)(107,315)(108,314)(109,361)(110,364)(111,363)(112,362)
(113,369)(114,372)(115,371)(116,370)(117,365)(118,368)(119,367)(120,366)
(121,373)(122,376)(123,375)(124,374)(125,381)(126,384)(127,383)(128,382)
(129,377)(130,380)(131,379)(132,378)(133,385)(134,388)(135,387)(136,386)
(137,393)(138,396)(139,395)(140,394)(141,389)(142,392)(143,391)(144,390)
(145,325)(146,328)(147,327)(148,326)(149,333)(150,336)(151,335)(152,334)
(153,329)(154,332)(155,331)(156,330)(157,337)(158,340)(159,339)(160,338)
(161,345)(162,348)(163,347)(164,346)(165,341)(166,344)(167,343)(168,342)
(169,349)(170,352)(171,351)(172,350)(173,357)(174,360)(175,359)(176,358)
(177,353)(178,356)(179,355)(180,354)(181,405)(182,408)(183,407)(184,406)
(185,401)(186,404)(187,403)(188,402)(189,397)(190,400)(191,399)(192,398)
(193,417)(194,420)(195,419)(196,418)(197,413)(198,416)(199,415)(200,414)
(201,409)(202,412)(203,411)(204,410)(205,429)(206,432)(207,431)(208,430)
(209,425)(210,428)(211,427)(212,426)(213,421)(214,424)(215,423)(216,422);;
s3 := ( 1,110)( 2,109)( 3,112)( 4,111)( 5,114)( 6,113)( 7,116)( 8,115)
( 9,118)( 10,117)( 11,120)( 12,119)( 13,122)( 14,121)( 15,124)( 16,123)
( 17,126)( 18,125)( 19,128)( 20,127)( 21,130)( 22,129)( 23,132)( 24,131)
( 25,134)( 26,133)( 27,136)( 28,135)( 29,138)( 30,137)( 31,140)( 32,139)
( 33,142)( 34,141)( 35,144)( 36,143)( 37,146)( 38,145)( 39,148)( 40,147)
( 41,150)( 42,149)( 43,152)( 44,151)( 45,154)( 46,153)( 47,156)( 48,155)
( 49,158)( 50,157)( 51,160)( 52,159)( 53,162)( 54,161)( 55,164)( 56,163)
( 57,166)( 58,165)( 59,168)( 60,167)( 61,170)( 62,169)( 63,172)( 64,171)
( 65,174)( 66,173)( 67,176)( 68,175)( 69,178)( 70,177)( 71,180)( 72,179)
( 73,182)( 74,181)( 75,184)( 76,183)( 77,186)( 78,185)( 79,188)( 80,187)
( 81,190)( 82,189)( 83,192)( 84,191)( 85,194)( 86,193)( 87,196)( 88,195)
( 89,198)( 90,197)( 91,200)( 92,199)( 93,202)( 94,201)( 95,204)( 96,203)
( 97,206)( 98,205)( 99,208)(100,207)(101,210)(102,209)(103,212)(104,211)
(105,214)(106,213)(107,216)(108,215)(217,326)(218,325)(219,328)(220,327)
(221,330)(222,329)(223,332)(224,331)(225,334)(226,333)(227,336)(228,335)
(229,338)(230,337)(231,340)(232,339)(233,342)(234,341)(235,344)(236,343)
(237,346)(238,345)(239,348)(240,347)(241,350)(242,349)(243,352)(244,351)
(245,354)(246,353)(247,356)(248,355)(249,358)(250,357)(251,360)(252,359)
(253,362)(254,361)(255,364)(256,363)(257,366)(258,365)(259,368)(260,367)
(261,370)(262,369)(263,372)(264,371)(265,374)(266,373)(267,376)(268,375)
(269,378)(270,377)(271,380)(272,379)(273,382)(274,381)(275,384)(276,383)
(277,386)(278,385)(279,388)(280,387)(281,390)(282,389)(283,392)(284,391)
(285,394)(286,393)(287,396)(288,395)(289,398)(290,397)(291,400)(292,399)
(293,402)(294,401)(295,404)(296,403)(297,406)(298,405)(299,408)(300,407)
(301,410)(302,409)(303,412)(304,411)(305,414)(306,413)(307,416)(308,415)
(309,418)(310,417)(311,420)(312,419)(313,422)(314,421)(315,424)(316,423)
(317,426)(318,425)(319,428)(320,427)(321,430)(322,429)(323,432)(324,431);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(432)!( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)
( 20, 32)( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)
( 52, 64)( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)
( 60, 72)( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)
( 92,104)( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)
(124,136)(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)
(132,144)(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)
(164,176)(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)
(196,208)(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)
(204,216)(229,241)(230,242)(231,243)(232,244)(233,245)(234,246)(235,247)
(236,248)(237,249)(238,250)(239,251)(240,252)(265,277)(266,278)(267,279)
(268,280)(269,281)(270,282)(271,283)(272,284)(273,285)(274,286)(275,287)
(276,288)(301,313)(302,314)(303,315)(304,316)(305,317)(306,318)(307,319)
(308,320)(309,321)(310,322)(311,323)(312,324)(337,349)(338,350)(339,351)
(340,352)(341,353)(342,354)(343,355)(344,356)(345,357)(346,358)(347,359)
(348,360)(373,385)(374,386)(375,387)(376,388)(377,389)(378,390)(379,391)
(380,392)(381,393)(382,394)(383,395)(384,396)(409,421)(410,422)(411,423)
(412,424)(413,425)(414,426)(415,427)(416,428)(417,429)(418,430)(419,431)
(420,432);
s1 := Sym(432)!( 1, 13)( 2, 14)( 3, 16)( 4, 15)( 5, 21)( 6, 22)( 7, 24)
( 8, 23)( 9, 17)( 10, 18)( 11, 20)( 12, 19)( 27, 28)( 29, 33)( 30, 34)
( 31, 36)( 32, 35)( 37, 93)( 38, 94)( 39, 96)( 40, 95)( 41, 89)( 42, 90)
( 43, 92)( 44, 91)( 45, 85)( 46, 86)( 47, 88)( 48, 87)( 49, 81)( 50, 82)
( 51, 84)( 52, 83)( 53, 77)( 54, 78)( 55, 80)( 56, 79)( 57, 73)( 58, 74)
( 59, 76)( 60, 75)( 61,105)( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)
( 67,104)( 68,103)( 69, 97)( 70, 98)( 71,100)( 72, 99)(109,121)(110,122)
(111,124)(112,123)(113,129)(114,130)(115,132)(116,131)(117,125)(118,126)
(119,128)(120,127)(135,136)(137,141)(138,142)(139,144)(140,143)(145,201)
(146,202)(147,204)(148,203)(149,197)(150,198)(151,200)(152,199)(153,193)
(154,194)(155,196)(156,195)(157,189)(158,190)(159,192)(160,191)(161,185)
(162,186)(163,188)(164,187)(165,181)(166,182)(167,184)(168,183)(169,213)
(170,214)(171,216)(172,215)(173,209)(174,210)(175,212)(176,211)(177,205)
(178,206)(179,208)(180,207)(217,229)(218,230)(219,232)(220,231)(221,237)
(222,238)(223,240)(224,239)(225,233)(226,234)(227,236)(228,235)(243,244)
(245,249)(246,250)(247,252)(248,251)(253,309)(254,310)(255,312)(256,311)
(257,305)(258,306)(259,308)(260,307)(261,301)(262,302)(263,304)(264,303)
(265,297)(266,298)(267,300)(268,299)(269,293)(270,294)(271,296)(272,295)
(273,289)(274,290)(275,292)(276,291)(277,321)(278,322)(279,324)(280,323)
(281,317)(282,318)(283,320)(284,319)(285,313)(286,314)(287,316)(288,315)
(325,337)(326,338)(327,340)(328,339)(329,345)(330,346)(331,348)(332,347)
(333,341)(334,342)(335,344)(336,343)(351,352)(353,357)(354,358)(355,360)
(356,359)(361,417)(362,418)(363,420)(364,419)(365,413)(366,414)(367,416)
(368,415)(369,409)(370,410)(371,412)(372,411)(373,405)(374,406)(375,408)
(376,407)(377,401)(378,402)(379,404)(380,403)(381,397)(382,398)(383,400)
(384,399)(385,429)(386,430)(387,432)(388,431)(389,425)(390,426)(391,428)
(392,427)(393,421)(394,422)(395,424)(396,423);
s2 := Sym(432)!( 1,253)( 2,256)( 3,255)( 4,254)( 5,261)( 6,264)( 7,263)
( 8,262)( 9,257)( 10,260)( 11,259)( 12,258)( 13,265)( 14,268)( 15,267)
( 16,266)( 17,273)( 18,276)( 19,275)( 20,274)( 21,269)( 22,272)( 23,271)
( 24,270)( 25,277)( 26,280)( 27,279)( 28,278)( 29,285)( 30,288)( 31,287)
( 32,286)( 33,281)( 34,284)( 35,283)( 36,282)( 37,217)( 38,220)( 39,219)
( 40,218)( 41,225)( 42,228)( 43,227)( 44,226)( 45,221)( 46,224)( 47,223)
( 48,222)( 49,229)( 50,232)( 51,231)( 52,230)( 53,237)( 54,240)( 55,239)
( 56,238)( 57,233)( 58,236)( 59,235)( 60,234)( 61,241)( 62,244)( 63,243)
( 64,242)( 65,249)( 66,252)( 67,251)( 68,250)( 69,245)( 70,248)( 71,247)
( 72,246)( 73,297)( 74,300)( 75,299)( 76,298)( 77,293)( 78,296)( 79,295)
( 80,294)( 81,289)( 82,292)( 83,291)( 84,290)( 85,309)( 86,312)( 87,311)
( 88,310)( 89,305)( 90,308)( 91,307)( 92,306)( 93,301)( 94,304)( 95,303)
( 96,302)( 97,321)( 98,324)( 99,323)(100,322)(101,317)(102,320)(103,319)
(104,318)(105,313)(106,316)(107,315)(108,314)(109,361)(110,364)(111,363)
(112,362)(113,369)(114,372)(115,371)(116,370)(117,365)(118,368)(119,367)
(120,366)(121,373)(122,376)(123,375)(124,374)(125,381)(126,384)(127,383)
(128,382)(129,377)(130,380)(131,379)(132,378)(133,385)(134,388)(135,387)
(136,386)(137,393)(138,396)(139,395)(140,394)(141,389)(142,392)(143,391)
(144,390)(145,325)(146,328)(147,327)(148,326)(149,333)(150,336)(151,335)
(152,334)(153,329)(154,332)(155,331)(156,330)(157,337)(158,340)(159,339)
(160,338)(161,345)(162,348)(163,347)(164,346)(165,341)(166,344)(167,343)
(168,342)(169,349)(170,352)(171,351)(172,350)(173,357)(174,360)(175,359)
(176,358)(177,353)(178,356)(179,355)(180,354)(181,405)(182,408)(183,407)
(184,406)(185,401)(186,404)(187,403)(188,402)(189,397)(190,400)(191,399)
(192,398)(193,417)(194,420)(195,419)(196,418)(197,413)(198,416)(199,415)
(200,414)(201,409)(202,412)(203,411)(204,410)(205,429)(206,432)(207,431)
(208,430)(209,425)(210,428)(211,427)(212,426)(213,421)(214,424)(215,423)
(216,422);
s3 := Sym(432)!( 1,110)( 2,109)( 3,112)( 4,111)( 5,114)( 6,113)( 7,116)
( 8,115)( 9,118)( 10,117)( 11,120)( 12,119)( 13,122)( 14,121)( 15,124)
( 16,123)( 17,126)( 18,125)( 19,128)( 20,127)( 21,130)( 22,129)( 23,132)
( 24,131)( 25,134)( 26,133)( 27,136)( 28,135)( 29,138)( 30,137)( 31,140)
( 32,139)( 33,142)( 34,141)( 35,144)( 36,143)( 37,146)( 38,145)( 39,148)
( 40,147)( 41,150)( 42,149)( 43,152)( 44,151)( 45,154)( 46,153)( 47,156)
( 48,155)( 49,158)( 50,157)( 51,160)( 52,159)( 53,162)( 54,161)( 55,164)
( 56,163)( 57,166)( 58,165)( 59,168)( 60,167)( 61,170)( 62,169)( 63,172)
( 64,171)( 65,174)( 66,173)( 67,176)( 68,175)( 69,178)( 70,177)( 71,180)
( 72,179)( 73,182)( 74,181)( 75,184)( 76,183)( 77,186)( 78,185)( 79,188)
( 80,187)( 81,190)( 82,189)( 83,192)( 84,191)( 85,194)( 86,193)( 87,196)
( 88,195)( 89,198)( 90,197)( 91,200)( 92,199)( 93,202)( 94,201)( 95,204)
( 96,203)( 97,206)( 98,205)( 99,208)(100,207)(101,210)(102,209)(103,212)
(104,211)(105,214)(106,213)(107,216)(108,215)(217,326)(218,325)(219,328)
(220,327)(221,330)(222,329)(223,332)(224,331)(225,334)(226,333)(227,336)
(228,335)(229,338)(230,337)(231,340)(232,339)(233,342)(234,341)(235,344)
(236,343)(237,346)(238,345)(239,348)(240,347)(241,350)(242,349)(243,352)
(244,351)(245,354)(246,353)(247,356)(248,355)(249,358)(250,357)(251,360)
(252,359)(253,362)(254,361)(255,364)(256,363)(257,366)(258,365)(259,368)
(260,367)(261,370)(262,369)(263,372)(264,371)(265,374)(266,373)(267,376)
(268,375)(269,378)(270,377)(271,380)(272,379)(273,382)(274,381)(275,384)
(276,383)(277,386)(278,385)(279,388)(280,387)(281,390)(282,389)(283,392)
(284,391)(285,394)(286,393)(287,396)(288,395)(289,398)(290,397)(291,400)
(292,399)(293,402)(294,401)(295,404)(296,403)(297,406)(298,405)(299,408)
(300,407)(301,410)(302,409)(303,412)(304,411)(305,414)(306,413)(307,416)
(308,415)(309,418)(310,417)(311,420)(312,419)(313,422)(314,421)(315,424)
(316,423)(317,426)(318,425)(319,428)(320,427)(321,430)(322,429)(323,432)
(324,431);
poly := sub<Sym(432)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope