include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,4}*288d
if this polytope has a name.
Group : SmallGroup(288,1028)
Rank : 4
Schlafli Type : {6,6,4}
Number of vertices, edges, etc : 6, 18, 12, 4
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,6,4,2} of size 576
Vertex Figure Of :
{2,6,6,4} of size 576
{3,6,6,4} of size 864
{4,6,6,4} of size 1152
{3,6,6,4} of size 1152
{4,6,6,4} of size 1152
{6,6,6,4} of size 1728
{6,6,6,4} of size 1728
{6,6,6,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,6,4}*96c
6-fold quotients : {2,3,4}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {6,12,4}*576d, {6,12,4}*576e, {12,6,4}*576d, {6,6,4}*576a
3-fold covers : {18,6,4}*864c, {6,18,4}*864c, {6,6,4}*864g, {6,6,4}*864i
4-fold covers : {6,6,4}*1152a, {6,24,4}*1152g, {6,24,4}*1152h, {24,6,4}*1152d, {12,12,4}*1152d, {12,12,4}*1152e, {6,12,4}*1152e, {12,6,4}*1152a, {6,6,4}*1152c, {6,12,4}*1152g, {6,6,8}*1152b, {6,6,8}*1152d, {6,12,4}*1152l, {12,6,4}*1152f
5-fold covers : {6,30,4}*1440d, {30,6,4}*1440e
6-fold covers : {18,12,4}*1728c, {18,12,4}*1728d, {36,6,4}*1728c, {6,36,4}*1728c, {6,36,4}*1728d, {12,18,4}*1728c, {6,12,4}*1728f, {6,12,4}*1728g, {12,6,4}*1728d, {18,6,4}*1728, {6,18,4}*1728a, {6,6,4}*1728b, {6,12,4}*1728l, {6,12,4}*1728m, {12,6,4}*1728j, {6,6,4}*1728c, {6,6,12}*1728a, {6,6,12}*1728c
Permutation Representation (GAP) :
s0 := ( 5, 9)( 6,10)( 7,11)( 8,12)(17,21)(18,22)(19,23)(20,24)(29,33)(30,34)
(31,35)(32,36)(41,45)(42,46)(43,47)(44,48)(53,57)(54,58)(55,59)(56,60)(65,69)
(66,70)(67,71)(68,72);;
s1 := ( 1, 5)( 2, 7)( 3, 6)( 4, 8)(10,11)(13,29)(14,31)(15,30)(16,32)(17,25)
(18,27)(19,26)(20,28)(21,33)(22,35)(23,34)(24,36)(37,41)(38,43)(39,42)(40,44)
(46,47)(49,65)(50,67)(51,66)(52,68)(53,61)(54,63)(55,62)(56,64)(57,69)(58,71)
(59,70)(60,72);;
s2 := ( 1,49)( 2,50)( 3,52)( 4,51)( 5,53)( 6,54)( 7,56)( 8,55)( 9,57)(10,58)
(11,60)(12,59)(13,37)(14,38)(15,40)(16,39)(17,41)(18,42)(19,44)(20,43)(21,45)
(22,46)(23,48)(24,47)(25,61)(26,62)(27,64)(28,63)(29,65)(30,66)(31,68)(32,67)
(33,69)(34,70)(35,72)(36,71);;
s3 := ( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)
(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,40)(38,39)(41,44)
(42,43)(45,48)(46,47)(49,52)(50,51)(53,56)(54,55)(57,60)(58,59)(61,64)(62,63)
(65,68)(66,67)(69,72)(70,71);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s2*s1*s3*s2*s3*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(72)!( 5, 9)( 6,10)( 7,11)( 8,12)(17,21)(18,22)(19,23)(20,24)(29,33)
(30,34)(31,35)(32,36)(41,45)(42,46)(43,47)(44,48)(53,57)(54,58)(55,59)(56,60)
(65,69)(66,70)(67,71)(68,72);
s1 := Sym(72)!( 1, 5)( 2, 7)( 3, 6)( 4, 8)(10,11)(13,29)(14,31)(15,30)(16,32)
(17,25)(18,27)(19,26)(20,28)(21,33)(22,35)(23,34)(24,36)(37,41)(38,43)(39,42)
(40,44)(46,47)(49,65)(50,67)(51,66)(52,68)(53,61)(54,63)(55,62)(56,64)(57,69)
(58,71)(59,70)(60,72);
s2 := Sym(72)!( 1,49)( 2,50)( 3,52)( 4,51)( 5,53)( 6,54)( 7,56)( 8,55)( 9,57)
(10,58)(11,60)(12,59)(13,37)(14,38)(15,40)(16,39)(17,41)(18,42)(19,44)(20,43)
(21,45)(22,46)(23,48)(24,47)(25,61)(26,62)(27,64)(28,63)(29,65)(30,66)(31,68)
(32,67)(33,69)(34,70)(35,72)(36,71);
s3 := Sym(72)!( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)
(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,40)(38,39)
(41,44)(42,43)(45,48)(46,47)(49,52)(50,51)(53,56)(54,55)(57,60)(58,59)(61,64)
(62,63)(65,68)(66,67)(69,72)(70,71);
poly := sub<Sym(72)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s2*s1*s3*s2*s3*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope