Polytope of Type {4,9,2,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,9,2,6}*1728
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 5
Schlafli Type : {4,9,2,6}
Number of vertices, edges, etc : 8, 36, 18, 6, 6
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,9,2,3}*864, {4,9,2,6}*864
   3-fold quotients : {4,9,2,2}*576, {4,3,2,6}*576
   4-fold quotients : {4,9,2,3}*432, {2,9,2,6}*432
   6-fold quotients : {4,9,2,2}*288, {4,3,2,3}*288, {4,3,2,6}*288
   8-fold quotients : {2,9,2,3}*216
   9-fold quotients : {4,3,2,2}*192
   12-fold quotients : {2,9,2,2}*144, {4,3,2,3}*144, {2,3,2,6}*144
   18-fold quotients : {4,3,2,2}*96
   24-fold quotients : {2,3,2,3}*72
   36-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,38)( 2,37)( 3,40)( 4,39)( 5,42)( 6,41)( 7,44)( 8,43)( 9,46)(10,45)
(11,48)(12,47)(13,50)(14,49)(15,52)(16,51)(17,54)(18,53)(19,56)(20,55)(21,58)
(22,57)(23,60)(24,59)(25,62)(26,61)(27,64)(28,63)(29,66)(30,65)(31,68)(32,67)
(33,70)(34,69)(35,72)(36,71);;
s1 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(13,29)(14,31)(15,30)(16,32)(17,25)
(18,27)(19,26)(20,28)(21,33)(22,35)(23,34)(24,36)(38,39)(41,45)(42,47)(43,46)
(44,48)(49,65)(50,67)(51,66)(52,68)(53,61)(54,63)(55,62)(56,64)(57,69)(58,71)
(59,70)(60,72);;
s2 := ( 1,13)( 2,14)( 3,16)( 4,15)( 5,21)( 6,22)( 7,24)( 8,23)( 9,17)(10,18)
(11,20)(12,19)(25,29)(26,30)(27,32)(28,31)(35,36)(37,49)(38,50)(39,52)(40,51)
(41,57)(42,58)(43,60)(44,59)(45,53)(46,54)(47,56)(48,55)(61,65)(62,66)(63,68)
(64,67)(71,72);;
s3 := (75,76)(77,78);;
s4 := (73,77)(74,75)(76,78);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(78)!( 1,38)( 2,37)( 3,40)( 4,39)( 5,42)( 6,41)( 7,44)( 8,43)( 9,46)
(10,45)(11,48)(12,47)(13,50)(14,49)(15,52)(16,51)(17,54)(18,53)(19,56)(20,55)
(21,58)(22,57)(23,60)(24,59)(25,62)(26,61)(27,64)(28,63)(29,66)(30,65)(31,68)
(32,67)(33,70)(34,69)(35,72)(36,71);
s1 := Sym(78)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(13,29)(14,31)(15,30)(16,32)
(17,25)(18,27)(19,26)(20,28)(21,33)(22,35)(23,34)(24,36)(38,39)(41,45)(42,47)
(43,46)(44,48)(49,65)(50,67)(51,66)(52,68)(53,61)(54,63)(55,62)(56,64)(57,69)
(58,71)(59,70)(60,72);
s2 := Sym(78)!( 1,13)( 2,14)( 3,16)( 4,15)( 5,21)( 6,22)( 7,24)( 8,23)( 9,17)
(10,18)(11,20)(12,19)(25,29)(26,30)(27,32)(28,31)(35,36)(37,49)(38,50)(39,52)
(40,51)(41,57)(42,58)(43,60)(44,59)(45,53)(46,54)(47,56)(48,55)(61,65)(62,66)
(63,68)(64,67)(71,72);
s3 := Sym(78)!(75,76)(77,78);
s4 := Sym(78)!(73,77)(74,75)(76,78);
poly := sub<Sym(78)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope