Polytope of Type {2,9,2,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,9,2,6}*432
if this polytope has a name.
Group : SmallGroup(432,544)
Rank : 5
Schlafli Type : {2,9,2,6}
Number of vertices, edges, etc : 2, 9, 9, 6, 6
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,9,2,6,2} of size 864
   {2,9,2,6,3} of size 1296
   {2,9,2,6,4} of size 1728
   {2,9,2,6,3} of size 1728
   {2,9,2,6,4} of size 1728
   {2,9,2,6,4} of size 1728
Vertex Figure Of :
   {2,2,9,2,6} of size 864
   {3,2,9,2,6} of size 1296
   {4,2,9,2,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,9,2,3}*216
   3-fold quotients : {2,9,2,2}*144, {2,3,2,6}*144
   6-fold quotients : {2,3,2,3}*72
   9-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,9,2,12}*864, {2,18,2,6}*864
   3-fold covers : {2,9,2,18}*1296, {2,9,6,6}*1296a, {2,27,2,6}*1296, {2,9,6,6}*1296b, {6,9,2,6}*1296
   4-fold covers : {2,9,2,24}*1728, {2,18,2,12}*1728, {2,36,2,6}*1728, {2,18,4,6}*1728, {4,18,2,6}*1728a, {2,9,4,6}*1728, {4,9,2,6}*1728
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8, 9)(10,11);;
s2 := ( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s3 := (14,15)(16,17);;
s4 := (12,16)(13,14)(15,17);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(17)!(1,2);
s1 := Sym(17)!( 4, 5)( 6, 7)( 8, 9)(10,11);
s2 := Sym(17)!( 3, 4)( 5, 6)( 7, 8)( 9,10);
s3 := Sym(17)!(14,15)(16,17);
s4 := Sym(17)!(12,16)(13,14)(15,17);
poly := sub<Sym(17)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope