Polytope of Type {6,6,6,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,6,4}*1728c
if this polytope has a name.
Group : SmallGroup(1728,46116)
Rank : 5
Schlafli Type : {6,6,6,4}
Number of vertices, edges, etc : 6, 18, 18, 12, 4
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,6,6,4}*864c, {6,6,3,4}*864a
   3-fold quotients : {6,2,6,4}*576b
   4-fold quotients : {3,6,3,4}*432
   6-fold quotients : {3,2,6,4}*288b, {6,2,3,4}*288
   9-fold quotients : {2,2,6,4}*192b
   12-fold quotients : {3,2,3,4}*144
   18-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  5,  9)(  6, 10)(  7, 11)(  8, 12)( 13, 25)( 14, 26)( 15, 27)( 16, 28)
( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 29)( 22, 30)( 23, 31)( 24, 32)
( 41, 45)( 42, 46)( 43, 47)( 44, 48)( 49, 61)( 50, 62)( 51, 63)( 52, 64)
( 53, 69)( 54, 70)( 55, 71)( 56, 72)( 57, 65)( 58, 66)( 59, 67)( 60, 68)
( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 85, 97)( 86, 98)( 87, 99)( 88,100)
( 89,105)( 90,106)( 91,107)( 92,108)( 93,101)( 94,102)( 95,103)( 96,104)
(113,117)(114,118)(115,119)(116,120)(121,133)(122,134)(123,135)(124,136)
(125,141)(126,142)(127,143)(128,144)(129,137)(130,138)(131,139)(132,140)
(149,153)(150,154)(151,155)(152,156)(157,169)(158,170)(159,171)(160,172)
(161,177)(162,178)(163,179)(164,180)(165,173)(166,174)(167,175)(168,176)
(185,189)(186,190)(187,191)(188,192)(193,205)(194,206)(195,207)(196,208)
(197,213)(198,214)(199,215)(200,216)(201,209)(202,210)(203,211)(204,212)
(221,225)(222,226)(223,227)(224,228)(229,241)(230,242)(231,243)(232,244)
(233,249)(234,250)(235,251)(236,252)(237,245)(238,246)(239,247)(240,248)
(257,261)(258,262)(259,263)(260,264)(265,277)(266,278)(267,279)(268,280)
(269,285)(270,286)(271,287)(272,288)(273,281)(274,282)(275,283)(276,284)
(293,297)(294,298)(295,299)(296,300)(301,313)(302,314)(303,315)(304,316)
(305,321)(306,322)(307,323)(308,324)(309,317)(310,318)(311,319)(312,320)
(329,333)(330,334)(331,335)(332,336)(337,349)(338,350)(339,351)(340,352)
(341,357)(342,358)(343,359)(344,360)(345,353)(346,354)(347,355)(348,356)
(365,369)(366,370)(367,371)(368,372)(373,385)(374,386)(375,387)(376,388)
(377,393)(378,394)(379,395)(380,396)(381,389)(382,390)(383,391)(384,392)
(401,405)(402,406)(403,407)(404,408)(409,421)(410,422)(411,423)(412,424)
(413,429)(414,430)(415,431)(416,432)(417,425)(418,426)(419,427)(420,428);;
s1 := (  1,229)(  2,230)(  3,231)(  4,232)(  5,237)(  6,238)(  7,239)(  8,240)
(  9,233)( 10,234)( 11,235)( 12,236)( 13,217)( 14,218)( 15,219)( 16,220)
( 17,225)( 18,226)( 19,227)( 20,228)( 21,221)( 22,222)( 23,223)( 24,224)
( 25,241)( 26,242)( 27,243)( 28,244)( 29,249)( 30,250)( 31,251)( 32,252)
( 33,245)( 34,246)( 35,247)( 36,248)( 37,265)( 38,266)( 39,267)( 40,268)
( 41,273)( 42,274)( 43,275)( 44,276)( 45,269)( 46,270)( 47,271)( 48,272)
( 49,253)( 50,254)( 51,255)( 52,256)( 53,261)( 54,262)( 55,263)( 56,264)
( 57,257)( 58,258)( 59,259)( 60,260)( 61,277)( 62,278)( 63,279)( 64,280)
( 65,285)( 66,286)( 67,287)( 68,288)( 69,281)( 70,282)( 71,283)( 72,284)
( 73,301)( 74,302)( 75,303)( 76,304)( 77,309)( 78,310)( 79,311)( 80,312)
( 81,305)( 82,306)( 83,307)( 84,308)( 85,289)( 86,290)( 87,291)( 88,292)
( 89,297)( 90,298)( 91,299)( 92,300)( 93,293)( 94,294)( 95,295)( 96,296)
( 97,313)( 98,314)( 99,315)(100,316)(101,321)(102,322)(103,323)(104,324)
(105,317)(106,318)(107,319)(108,320)(109,337)(110,338)(111,339)(112,340)
(113,345)(114,346)(115,347)(116,348)(117,341)(118,342)(119,343)(120,344)
(121,325)(122,326)(123,327)(124,328)(125,333)(126,334)(127,335)(128,336)
(129,329)(130,330)(131,331)(132,332)(133,349)(134,350)(135,351)(136,352)
(137,357)(138,358)(139,359)(140,360)(141,353)(142,354)(143,355)(144,356)
(145,373)(146,374)(147,375)(148,376)(149,381)(150,382)(151,383)(152,384)
(153,377)(154,378)(155,379)(156,380)(157,361)(158,362)(159,363)(160,364)
(161,369)(162,370)(163,371)(164,372)(165,365)(166,366)(167,367)(168,368)
(169,385)(170,386)(171,387)(172,388)(173,393)(174,394)(175,395)(176,396)
(177,389)(178,390)(179,391)(180,392)(181,409)(182,410)(183,411)(184,412)
(185,417)(186,418)(187,419)(188,420)(189,413)(190,414)(191,415)(192,416)
(193,397)(194,398)(195,399)(196,400)(197,405)(198,406)(199,407)(200,408)
(201,401)(202,402)(203,403)(204,404)(205,421)(206,422)(207,423)(208,424)
(209,429)(210,430)(211,431)(212,432)(213,425)(214,426)(215,427)(216,428);;
s2 := (  1, 37)(  2, 40)(  3, 39)(  4, 38)(  5, 45)(  6, 48)(  7, 47)(  8, 46)
(  9, 41)( 10, 44)( 11, 43)( 12, 42)( 13, 53)( 14, 56)( 15, 55)( 16, 54)
( 17, 49)( 18, 52)( 19, 51)( 20, 50)( 21, 57)( 22, 60)( 23, 59)( 24, 58)
( 25, 69)( 26, 72)( 27, 71)( 28, 70)( 29, 65)( 30, 68)( 31, 67)( 32, 66)
( 33, 61)( 34, 64)( 35, 63)( 36, 62)( 74, 76)( 77, 81)( 78, 84)( 79, 83)
( 80, 82)( 85, 89)( 86, 92)( 87, 91)( 88, 90)( 94, 96)( 97,105)( 98,108)
( 99,107)(100,106)(102,104)(109,145)(110,148)(111,147)(112,146)(113,153)
(114,156)(115,155)(116,154)(117,149)(118,152)(119,151)(120,150)(121,161)
(122,164)(123,163)(124,162)(125,157)(126,160)(127,159)(128,158)(129,165)
(130,168)(131,167)(132,166)(133,177)(134,180)(135,179)(136,178)(137,173)
(138,176)(139,175)(140,174)(141,169)(142,172)(143,171)(144,170)(182,184)
(185,189)(186,192)(187,191)(188,190)(193,197)(194,200)(195,199)(196,198)
(202,204)(205,213)(206,216)(207,215)(208,214)(210,212)(217,253)(218,256)
(219,255)(220,254)(221,261)(222,264)(223,263)(224,262)(225,257)(226,260)
(227,259)(228,258)(229,269)(230,272)(231,271)(232,270)(233,265)(234,268)
(235,267)(236,266)(237,273)(238,276)(239,275)(240,274)(241,285)(242,288)
(243,287)(244,286)(245,281)(246,284)(247,283)(248,282)(249,277)(250,280)
(251,279)(252,278)(290,292)(293,297)(294,300)(295,299)(296,298)(301,305)
(302,308)(303,307)(304,306)(310,312)(313,321)(314,324)(315,323)(316,322)
(318,320)(325,361)(326,364)(327,363)(328,362)(329,369)(330,372)(331,371)
(332,370)(333,365)(334,368)(335,367)(336,366)(337,377)(338,380)(339,379)
(340,378)(341,373)(342,376)(343,375)(344,374)(345,381)(346,384)(347,383)
(348,382)(349,393)(350,396)(351,395)(352,394)(353,389)(354,392)(355,391)
(356,390)(357,385)(358,388)(359,387)(360,386)(398,400)(401,405)(402,408)
(403,407)(404,406)(409,413)(410,416)(411,415)(412,414)(418,420)(421,429)
(422,432)(423,431)(424,430)(426,428);;
s3 := (  1,109)(  2,110)(  3,112)(  4,111)(  5,117)(  6,118)(  7,120)(  8,119)
(  9,113)( 10,114)( 11,116)( 12,115)( 13,121)( 14,122)( 15,124)( 16,123)
( 17,129)( 18,130)( 19,132)( 20,131)( 21,125)( 22,126)( 23,128)( 24,127)
( 25,133)( 26,134)( 27,136)( 28,135)( 29,141)( 30,142)( 31,144)( 32,143)
( 33,137)( 34,138)( 35,140)( 36,139)( 37,181)( 38,182)( 39,184)( 40,183)
( 41,189)( 42,190)( 43,192)( 44,191)( 45,185)( 46,186)( 47,188)( 48,187)
( 49,193)( 50,194)( 51,196)( 52,195)( 53,201)( 54,202)( 55,204)( 56,203)
( 57,197)( 58,198)( 59,200)( 60,199)( 61,205)( 62,206)( 63,208)( 64,207)
( 65,213)( 66,214)( 67,216)( 68,215)( 69,209)( 70,210)( 71,212)( 72,211)
( 73,145)( 74,146)( 75,148)( 76,147)( 77,153)( 78,154)( 79,156)( 80,155)
( 81,149)( 82,150)( 83,152)( 84,151)( 85,157)( 86,158)( 87,160)( 88,159)
( 89,165)( 90,166)( 91,168)( 92,167)( 93,161)( 94,162)( 95,164)( 96,163)
( 97,169)( 98,170)( 99,172)(100,171)(101,177)(102,178)(103,180)(104,179)
(105,173)(106,174)(107,176)(108,175)(217,325)(218,326)(219,328)(220,327)
(221,333)(222,334)(223,336)(224,335)(225,329)(226,330)(227,332)(228,331)
(229,337)(230,338)(231,340)(232,339)(233,345)(234,346)(235,348)(236,347)
(237,341)(238,342)(239,344)(240,343)(241,349)(242,350)(243,352)(244,351)
(245,357)(246,358)(247,360)(248,359)(249,353)(250,354)(251,356)(252,355)
(253,397)(254,398)(255,400)(256,399)(257,405)(258,406)(259,408)(260,407)
(261,401)(262,402)(263,404)(264,403)(265,409)(266,410)(267,412)(268,411)
(269,417)(270,418)(271,420)(272,419)(273,413)(274,414)(275,416)(276,415)
(277,421)(278,422)(279,424)(280,423)(281,429)(282,430)(283,432)(284,431)
(285,425)(286,426)(287,428)(288,427)(289,361)(290,362)(291,364)(292,363)
(293,369)(294,370)(295,372)(296,371)(297,365)(298,366)(299,368)(300,367)
(301,373)(302,374)(303,376)(304,375)(305,381)(306,382)(307,384)(308,383)
(309,377)(310,378)(311,380)(312,379)(313,385)(314,386)(315,388)(316,387)
(317,393)(318,394)(319,396)(320,395)(321,389)(322,390)(323,392)(324,391);;
s4 := (  1,111)(  2,112)(  3,109)(  4,110)(  5,115)(  6,116)(  7,113)(  8,114)
(  9,119)( 10,120)( 11,117)( 12,118)( 13,123)( 14,124)( 15,121)( 16,122)
( 17,127)( 18,128)( 19,125)( 20,126)( 21,131)( 22,132)( 23,129)( 24,130)
( 25,135)( 26,136)( 27,133)( 28,134)( 29,139)( 30,140)( 31,137)( 32,138)
( 33,143)( 34,144)( 35,141)( 36,142)( 37,147)( 38,148)( 39,145)( 40,146)
( 41,151)( 42,152)( 43,149)( 44,150)( 45,155)( 46,156)( 47,153)( 48,154)
( 49,159)( 50,160)( 51,157)( 52,158)( 53,163)( 54,164)( 55,161)( 56,162)
( 57,167)( 58,168)( 59,165)( 60,166)( 61,171)( 62,172)( 63,169)( 64,170)
( 65,175)( 66,176)( 67,173)( 68,174)( 69,179)( 70,180)( 71,177)( 72,178)
( 73,183)( 74,184)( 75,181)( 76,182)( 77,187)( 78,188)( 79,185)( 80,186)
( 81,191)( 82,192)( 83,189)( 84,190)( 85,195)( 86,196)( 87,193)( 88,194)
( 89,199)( 90,200)( 91,197)( 92,198)( 93,203)( 94,204)( 95,201)( 96,202)
( 97,207)( 98,208)( 99,205)(100,206)(101,211)(102,212)(103,209)(104,210)
(105,215)(106,216)(107,213)(108,214)(217,327)(218,328)(219,325)(220,326)
(221,331)(222,332)(223,329)(224,330)(225,335)(226,336)(227,333)(228,334)
(229,339)(230,340)(231,337)(232,338)(233,343)(234,344)(235,341)(236,342)
(237,347)(238,348)(239,345)(240,346)(241,351)(242,352)(243,349)(244,350)
(245,355)(246,356)(247,353)(248,354)(249,359)(250,360)(251,357)(252,358)
(253,363)(254,364)(255,361)(256,362)(257,367)(258,368)(259,365)(260,366)
(261,371)(262,372)(263,369)(264,370)(265,375)(266,376)(267,373)(268,374)
(269,379)(270,380)(271,377)(272,378)(273,383)(274,384)(275,381)(276,382)
(277,387)(278,388)(279,385)(280,386)(281,391)(282,392)(283,389)(284,390)
(285,395)(286,396)(287,393)(288,394)(289,399)(290,400)(291,397)(292,398)
(293,403)(294,404)(295,401)(296,402)(297,407)(298,408)(299,405)(300,406)
(301,411)(302,412)(303,409)(304,410)(305,415)(306,416)(307,413)(308,414)
(309,419)(310,420)(311,417)(312,418)(313,423)(314,424)(315,421)(316,422)
(317,427)(318,428)(319,425)(320,426)(321,431)(322,432)(323,429)(324,430);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s4*s2*s3*s4*s2*s3*s4, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!(  5,  9)(  6, 10)(  7, 11)(  8, 12)( 13, 25)( 14, 26)( 15, 27)
( 16, 28)( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 29)( 22, 30)( 23, 31)
( 24, 32)( 41, 45)( 42, 46)( 43, 47)( 44, 48)( 49, 61)( 50, 62)( 51, 63)
( 52, 64)( 53, 69)( 54, 70)( 55, 71)( 56, 72)( 57, 65)( 58, 66)( 59, 67)
( 60, 68)( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 85, 97)( 86, 98)( 87, 99)
( 88,100)( 89,105)( 90,106)( 91,107)( 92,108)( 93,101)( 94,102)( 95,103)
( 96,104)(113,117)(114,118)(115,119)(116,120)(121,133)(122,134)(123,135)
(124,136)(125,141)(126,142)(127,143)(128,144)(129,137)(130,138)(131,139)
(132,140)(149,153)(150,154)(151,155)(152,156)(157,169)(158,170)(159,171)
(160,172)(161,177)(162,178)(163,179)(164,180)(165,173)(166,174)(167,175)
(168,176)(185,189)(186,190)(187,191)(188,192)(193,205)(194,206)(195,207)
(196,208)(197,213)(198,214)(199,215)(200,216)(201,209)(202,210)(203,211)
(204,212)(221,225)(222,226)(223,227)(224,228)(229,241)(230,242)(231,243)
(232,244)(233,249)(234,250)(235,251)(236,252)(237,245)(238,246)(239,247)
(240,248)(257,261)(258,262)(259,263)(260,264)(265,277)(266,278)(267,279)
(268,280)(269,285)(270,286)(271,287)(272,288)(273,281)(274,282)(275,283)
(276,284)(293,297)(294,298)(295,299)(296,300)(301,313)(302,314)(303,315)
(304,316)(305,321)(306,322)(307,323)(308,324)(309,317)(310,318)(311,319)
(312,320)(329,333)(330,334)(331,335)(332,336)(337,349)(338,350)(339,351)
(340,352)(341,357)(342,358)(343,359)(344,360)(345,353)(346,354)(347,355)
(348,356)(365,369)(366,370)(367,371)(368,372)(373,385)(374,386)(375,387)
(376,388)(377,393)(378,394)(379,395)(380,396)(381,389)(382,390)(383,391)
(384,392)(401,405)(402,406)(403,407)(404,408)(409,421)(410,422)(411,423)
(412,424)(413,429)(414,430)(415,431)(416,432)(417,425)(418,426)(419,427)
(420,428);
s1 := Sym(432)!(  1,229)(  2,230)(  3,231)(  4,232)(  5,237)(  6,238)(  7,239)
(  8,240)(  9,233)( 10,234)( 11,235)( 12,236)( 13,217)( 14,218)( 15,219)
( 16,220)( 17,225)( 18,226)( 19,227)( 20,228)( 21,221)( 22,222)( 23,223)
( 24,224)( 25,241)( 26,242)( 27,243)( 28,244)( 29,249)( 30,250)( 31,251)
( 32,252)( 33,245)( 34,246)( 35,247)( 36,248)( 37,265)( 38,266)( 39,267)
( 40,268)( 41,273)( 42,274)( 43,275)( 44,276)( 45,269)( 46,270)( 47,271)
( 48,272)( 49,253)( 50,254)( 51,255)( 52,256)( 53,261)( 54,262)( 55,263)
( 56,264)( 57,257)( 58,258)( 59,259)( 60,260)( 61,277)( 62,278)( 63,279)
( 64,280)( 65,285)( 66,286)( 67,287)( 68,288)( 69,281)( 70,282)( 71,283)
( 72,284)( 73,301)( 74,302)( 75,303)( 76,304)( 77,309)( 78,310)( 79,311)
( 80,312)( 81,305)( 82,306)( 83,307)( 84,308)( 85,289)( 86,290)( 87,291)
( 88,292)( 89,297)( 90,298)( 91,299)( 92,300)( 93,293)( 94,294)( 95,295)
( 96,296)( 97,313)( 98,314)( 99,315)(100,316)(101,321)(102,322)(103,323)
(104,324)(105,317)(106,318)(107,319)(108,320)(109,337)(110,338)(111,339)
(112,340)(113,345)(114,346)(115,347)(116,348)(117,341)(118,342)(119,343)
(120,344)(121,325)(122,326)(123,327)(124,328)(125,333)(126,334)(127,335)
(128,336)(129,329)(130,330)(131,331)(132,332)(133,349)(134,350)(135,351)
(136,352)(137,357)(138,358)(139,359)(140,360)(141,353)(142,354)(143,355)
(144,356)(145,373)(146,374)(147,375)(148,376)(149,381)(150,382)(151,383)
(152,384)(153,377)(154,378)(155,379)(156,380)(157,361)(158,362)(159,363)
(160,364)(161,369)(162,370)(163,371)(164,372)(165,365)(166,366)(167,367)
(168,368)(169,385)(170,386)(171,387)(172,388)(173,393)(174,394)(175,395)
(176,396)(177,389)(178,390)(179,391)(180,392)(181,409)(182,410)(183,411)
(184,412)(185,417)(186,418)(187,419)(188,420)(189,413)(190,414)(191,415)
(192,416)(193,397)(194,398)(195,399)(196,400)(197,405)(198,406)(199,407)
(200,408)(201,401)(202,402)(203,403)(204,404)(205,421)(206,422)(207,423)
(208,424)(209,429)(210,430)(211,431)(212,432)(213,425)(214,426)(215,427)
(216,428);
s2 := Sym(432)!(  1, 37)(  2, 40)(  3, 39)(  4, 38)(  5, 45)(  6, 48)(  7, 47)
(  8, 46)(  9, 41)( 10, 44)( 11, 43)( 12, 42)( 13, 53)( 14, 56)( 15, 55)
( 16, 54)( 17, 49)( 18, 52)( 19, 51)( 20, 50)( 21, 57)( 22, 60)( 23, 59)
( 24, 58)( 25, 69)( 26, 72)( 27, 71)( 28, 70)( 29, 65)( 30, 68)( 31, 67)
( 32, 66)( 33, 61)( 34, 64)( 35, 63)( 36, 62)( 74, 76)( 77, 81)( 78, 84)
( 79, 83)( 80, 82)( 85, 89)( 86, 92)( 87, 91)( 88, 90)( 94, 96)( 97,105)
( 98,108)( 99,107)(100,106)(102,104)(109,145)(110,148)(111,147)(112,146)
(113,153)(114,156)(115,155)(116,154)(117,149)(118,152)(119,151)(120,150)
(121,161)(122,164)(123,163)(124,162)(125,157)(126,160)(127,159)(128,158)
(129,165)(130,168)(131,167)(132,166)(133,177)(134,180)(135,179)(136,178)
(137,173)(138,176)(139,175)(140,174)(141,169)(142,172)(143,171)(144,170)
(182,184)(185,189)(186,192)(187,191)(188,190)(193,197)(194,200)(195,199)
(196,198)(202,204)(205,213)(206,216)(207,215)(208,214)(210,212)(217,253)
(218,256)(219,255)(220,254)(221,261)(222,264)(223,263)(224,262)(225,257)
(226,260)(227,259)(228,258)(229,269)(230,272)(231,271)(232,270)(233,265)
(234,268)(235,267)(236,266)(237,273)(238,276)(239,275)(240,274)(241,285)
(242,288)(243,287)(244,286)(245,281)(246,284)(247,283)(248,282)(249,277)
(250,280)(251,279)(252,278)(290,292)(293,297)(294,300)(295,299)(296,298)
(301,305)(302,308)(303,307)(304,306)(310,312)(313,321)(314,324)(315,323)
(316,322)(318,320)(325,361)(326,364)(327,363)(328,362)(329,369)(330,372)
(331,371)(332,370)(333,365)(334,368)(335,367)(336,366)(337,377)(338,380)
(339,379)(340,378)(341,373)(342,376)(343,375)(344,374)(345,381)(346,384)
(347,383)(348,382)(349,393)(350,396)(351,395)(352,394)(353,389)(354,392)
(355,391)(356,390)(357,385)(358,388)(359,387)(360,386)(398,400)(401,405)
(402,408)(403,407)(404,406)(409,413)(410,416)(411,415)(412,414)(418,420)
(421,429)(422,432)(423,431)(424,430)(426,428);
s3 := Sym(432)!(  1,109)(  2,110)(  3,112)(  4,111)(  5,117)(  6,118)(  7,120)
(  8,119)(  9,113)( 10,114)( 11,116)( 12,115)( 13,121)( 14,122)( 15,124)
( 16,123)( 17,129)( 18,130)( 19,132)( 20,131)( 21,125)( 22,126)( 23,128)
( 24,127)( 25,133)( 26,134)( 27,136)( 28,135)( 29,141)( 30,142)( 31,144)
( 32,143)( 33,137)( 34,138)( 35,140)( 36,139)( 37,181)( 38,182)( 39,184)
( 40,183)( 41,189)( 42,190)( 43,192)( 44,191)( 45,185)( 46,186)( 47,188)
( 48,187)( 49,193)( 50,194)( 51,196)( 52,195)( 53,201)( 54,202)( 55,204)
( 56,203)( 57,197)( 58,198)( 59,200)( 60,199)( 61,205)( 62,206)( 63,208)
( 64,207)( 65,213)( 66,214)( 67,216)( 68,215)( 69,209)( 70,210)( 71,212)
( 72,211)( 73,145)( 74,146)( 75,148)( 76,147)( 77,153)( 78,154)( 79,156)
( 80,155)( 81,149)( 82,150)( 83,152)( 84,151)( 85,157)( 86,158)( 87,160)
( 88,159)( 89,165)( 90,166)( 91,168)( 92,167)( 93,161)( 94,162)( 95,164)
( 96,163)( 97,169)( 98,170)( 99,172)(100,171)(101,177)(102,178)(103,180)
(104,179)(105,173)(106,174)(107,176)(108,175)(217,325)(218,326)(219,328)
(220,327)(221,333)(222,334)(223,336)(224,335)(225,329)(226,330)(227,332)
(228,331)(229,337)(230,338)(231,340)(232,339)(233,345)(234,346)(235,348)
(236,347)(237,341)(238,342)(239,344)(240,343)(241,349)(242,350)(243,352)
(244,351)(245,357)(246,358)(247,360)(248,359)(249,353)(250,354)(251,356)
(252,355)(253,397)(254,398)(255,400)(256,399)(257,405)(258,406)(259,408)
(260,407)(261,401)(262,402)(263,404)(264,403)(265,409)(266,410)(267,412)
(268,411)(269,417)(270,418)(271,420)(272,419)(273,413)(274,414)(275,416)
(276,415)(277,421)(278,422)(279,424)(280,423)(281,429)(282,430)(283,432)
(284,431)(285,425)(286,426)(287,428)(288,427)(289,361)(290,362)(291,364)
(292,363)(293,369)(294,370)(295,372)(296,371)(297,365)(298,366)(299,368)
(300,367)(301,373)(302,374)(303,376)(304,375)(305,381)(306,382)(307,384)
(308,383)(309,377)(310,378)(311,380)(312,379)(313,385)(314,386)(315,388)
(316,387)(317,393)(318,394)(319,396)(320,395)(321,389)(322,390)(323,392)
(324,391);
s4 := Sym(432)!(  1,111)(  2,112)(  3,109)(  4,110)(  5,115)(  6,116)(  7,113)
(  8,114)(  9,119)( 10,120)( 11,117)( 12,118)( 13,123)( 14,124)( 15,121)
( 16,122)( 17,127)( 18,128)( 19,125)( 20,126)( 21,131)( 22,132)( 23,129)
( 24,130)( 25,135)( 26,136)( 27,133)( 28,134)( 29,139)( 30,140)( 31,137)
( 32,138)( 33,143)( 34,144)( 35,141)( 36,142)( 37,147)( 38,148)( 39,145)
( 40,146)( 41,151)( 42,152)( 43,149)( 44,150)( 45,155)( 46,156)( 47,153)
( 48,154)( 49,159)( 50,160)( 51,157)( 52,158)( 53,163)( 54,164)( 55,161)
( 56,162)( 57,167)( 58,168)( 59,165)( 60,166)( 61,171)( 62,172)( 63,169)
( 64,170)( 65,175)( 66,176)( 67,173)( 68,174)( 69,179)( 70,180)( 71,177)
( 72,178)( 73,183)( 74,184)( 75,181)( 76,182)( 77,187)( 78,188)( 79,185)
( 80,186)( 81,191)( 82,192)( 83,189)( 84,190)( 85,195)( 86,196)( 87,193)
( 88,194)( 89,199)( 90,200)( 91,197)( 92,198)( 93,203)( 94,204)( 95,201)
( 96,202)( 97,207)( 98,208)( 99,205)(100,206)(101,211)(102,212)(103,209)
(104,210)(105,215)(106,216)(107,213)(108,214)(217,327)(218,328)(219,325)
(220,326)(221,331)(222,332)(223,329)(224,330)(225,335)(226,336)(227,333)
(228,334)(229,339)(230,340)(231,337)(232,338)(233,343)(234,344)(235,341)
(236,342)(237,347)(238,348)(239,345)(240,346)(241,351)(242,352)(243,349)
(244,350)(245,355)(246,356)(247,353)(248,354)(249,359)(250,360)(251,357)
(252,358)(253,363)(254,364)(255,361)(256,362)(257,367)(258,368)(259,365)
(260,366)(261,371)(262,372)(263,369)(264,370)(265,375)(266,376)(267,373)
(268,374)(269,379)(270,380)(271,377)(272,378)(273,383)(274,384)(275,381)
(276,382)(277,387)(278,388)(279,385)(280,386)(281,391)(282,392)(283,389)
(284,390)(285,395)(286,396)(287,393)(288,394)(289,399)(290,400)(291,397)
(292,398)(293,403)(294,404)(295,401)(296,402)(297,407)(298,408)(299,405)
(300,406)(301,411)(302,412)(303,409)(304,410)(305,415)(306,416)(307,413)
(308,414)(309,419)(310,420)(311,417)(312,418)(313,423)(314,424)(315,421)
(316,422)(317,427)(318,428)(319,425)(320,426)(321,431)(322,432)(323,429)
(324,430);
poly := sub<Sym(432)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s4*s2*s3*s4*s2*s3*s4, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope