include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,3,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,3,4}*864a
if this polytope has a name.
Group : SmallGroup(864,4000)
Rank : 5
Schlafli Type : {6,6,3,4}
Number of vertices, edges, etc : 6, 18, 9, 6, 4
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,6,3,4,2} of size 1728
Vertex Figure Of :
{2,6,6,3,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,6,3,4}*432
3-fold quotients : {6,2,3,4}*288
6-fold quotients : {3,2,3,4}*144
9-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,6,3,4}*1728a, {6,6,3,4}*1728a, {6,6,6,4}*1728b, {6,6,6,4}*1728c
Permutation Representation (GAP) :
s0 := ( 5, 9)( 6, 10)( 7, 11)( 8, 12)( 13, 25)( 14, 26)( 15, 27)( 16, 28)
( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 29)( 22, 30)( 23, 31)( 24, 32)
( 41, 45)( 42, 46)( 43, 47)( 44, 48)( 49, 61)( 50, 62)( 51, 63)( 52, 64)
( 53, 69)( 54, 70)( 55, 71)( 56, 72)( 57, 65)( 58, 66)( 59, 67)( 60, 68)
( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 85, 97)( 86, 98)( 87, 99)( 88,100)
( 89,105)( 90,106)( 91,107)( 92,108)( 93,101)( 94,102)( 95,103)( 96,104)
(113,117)(114,118)(115,119)(116,120)(121,133)(122,134)(123,135)(124,136)
(125,141)(126,142)(127,143)(128,144)(129,137)(130,138)(131,139)(132,140)
(149,153)(150,154)(151,155)(152,156)(157,169)(158,170)(159,171)(160,172)
(161,177)(162,178)(163,179)(164,180)(165,173)(166,174)(167,175)(168,176)
(185,189)(186,190)(187,191)(188,192)(193,205)(194,206)(195,207)(196,208)
(197,213)(198,214)(199,215)(200,216)(201,209)(202,210)(203,211)(204,212);;
s1 := ( 1,121)( 2,122)( 3,123)( 4,124)( 5,129)( 6,130)( 7,131)( 8,132)
( 9,125)( 10,126)( 11,127)( 12,128)( 13,109)( 14,110)( 15,111)( 16,112)
( 17,117)( 18,118)( 19,119)( 20,120)( 21,113)( 22,114)( 23,115)( 24,116)
( 25,133)( 26,134)( 27,135)( 28,136)( 29,141)( 30,142)( 31,143)( 32,144)
( 33,137)( 34,138)( 35,139)( 36,140)( 37,157)( 38,158)( 39,159)( 40,160)
( 41,165)( 42,166)( 43,167)( 44,168)( 45,161)( 46,162)( 47,163)( 48,164)
( 49,145)( 50,146)( 51,147)( 52,148)( 53,153)( 54,154)( 55,155)( 56,156)
( 57,149)( 58,150)( 59,151)( 60,152)( 61,169)( 62,170)( 63,171)( 64,172)
( 65,177)( 66,178)( 67,179)( 68,180)( 69,173)( 70,174)( 71,175)( 72,176)
( 73,193)( 74,194)( 75,195)( 76,196)( 77,201)( 78,202)( 79,203)( 80,204)
( 81,197)( 82,198)( 83,199)( 84,200)( 85,181)( 86,182)( 87,183)( 88,184)
( 89,189)( 90,190)( 91,191)( 92,192)( 93,185)( 94,186)( 95,187)( 96,188)
( 97,205)( 98,206)( 99,207)(100,208)(101,213)(102,214)(103,215)(104,216)
(105,209)(106,210)(107,211)(108,212);;
s2 := ( 1, 37)( 2, 38)( 3, 40)( 4, 39)( 5, 45)( 6, 46)( 7, 48)( 8, 47)
( 9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 53)( 14, 54)( 15, 56)( 16, 55)
( 17, 49)( 18, 50)( 19, 52)( 20, 51)( 21, 57)( 22, 58)( 23, 60)( 24, 59)
( 25, 69)( 26, 70)( 27, 72)( 28, 71)( 29, 65)( 30, 66)( 31, 68)( 32, 67)
( 33, 61)( 34, 62)( 35, 64)( 36, 63)( 75, 76)( 77, 81)( 78, 82)( 79, 84)
( 80, 83)( 85, 89)( 86, 90)( 87, 92)( 88, 91)( 95, 96)( 97,105)( 98,106)
( 99,108)(100,107)(103,104)(109,145)(110,146)(111,148)(112,147)(113,153)
(114,154)(115,156)(116,155)(117,149)(118,150)(119,152)(120,151)(121,161)
(122,162)(123,164)(124,163)(125,157)(126,158)(127,160)(128,159)(129,165)
(130,166)(131,168)(132,167)(133,177)(134,178)(135,180)(136,179)(137,173)
(138,174)(139,176)(140,175)(141,169)(142,170)(143,172)(144,171)(183,184)
(185,189)(186,190)(187,192)(188,191)(193,197)(194,198)(195,200)(196,199)
(203,204)(205,213)(206,214)(207,216)(208,215)(211,212);;
s3 := ( 2, 3)( 5, 9)( 6, 11)( 7, 10)( 8, 12)( 14, 15)( 17, 21)( 18, 23)
( 19, 22)( 20, 24)( 26, 27)( 29, 33)( 30, 35)( 31, 34)( 32, 36)( 37, 73)
( 38, 75)( 39, 74)( 40, 76)( 41, 81)( 42, 83)( 43, 82)( 44, 84)( 45, 77)
( 46, 79)( 47, 78)( 48, 80)( 49, 85)( 50, 87)( 51, 86)( 52, 88)( 53, 93)
( 54, 95)( 55, 94)( 56, 96)( 57, 89)( 58, 91)( 59, 90)( 60, 92)( 61, 97)
( 62, 99)( 63, 98)( 64,100)( 65,105)( 66,107)( 67,106)( 68,108)( 69,101)
( 70,103)( 71,102)( 72,104)(110,111)(113,117)(114,119)(115,118)(116,120)
(122,123)(125,129)(126,131)(127,130)(128,132)(134,135)(137,141)(138,143)
(139,142)(140,144)(145,181)(146,183)(147,182)(148,184)(149,189)(150,191)
(151,190)(152,192)(153,185)(154,187)(155,186)(156,188)(157,193)(158,195)
(159,194)(160,196)(161,201)(162,203)(163,202)(164,204)(165,197)(166,199)
(167,198)(168,200)(169,205)(170,207)(171,206)(172,208)(173,213)(174,215)
(175,214)(176,216)(177,209)(178,211)(179,210)(180,212);;
s4 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)
(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)
(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)
(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)
(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)
(209,210)(211,212)(213,214)(215,216);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s4*s3*s2*s4*s3*s2*s4*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(216)!( 5, 9)( 6, 10)( 7, 11)( 8, 12)( 13, 25)( 14, 26)( 15, 27)
( 16, 28)( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 29)( 22, 30)( 23, 31)
( 24, 32)( 41, 45)( 42, 46)( 43, 47)( 44, 48)( 49, 61)( 50, 62)( 51, 63)
( 52, 64)( 53, 69)( 54, 70)( 55, 71)( 56, 72)( 57, 65)( 58, 66)( 59, 67)
( 60, 68)( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 85, 97)( 86, 98)( 87, 99)
( 88,100)( 89,105)( 90,106)( 91,107)( 92,108)( 93,101)( 94,102)( 95,103)
( 96,104)(113,117)(114,118)(115,119)(116,120)(121,133)(122,134)(123,135)
(124,136)(125,141)(126,142)(127,143)(128,144)(129,137)(130,138)(131,139)
(132,140)(149,153)(150,154)(151,155)(152,156)(157,169)(158,170)(159,171)
(160,172)(161,177)(162,178)(163,179)(164,180)(165,173)(166,174)(167,175)
(168,176)(185,189)(186,190)(187,191)(188,192)(193,205)(194,206)(195,207)
(196,208)(197,213)(198,214)(199,215)(200,216)(201,209)(202,210)(203,211)
(204,212);
s1 := Sym(216)!( 1,121)( 2,122)( 3,123)( 4,124)( 5,129)( 6,130)( 7,131)
( 8,132)( 9,125)( 10,126)( 11,127)( 12,128)( 13,109)( 14,110)( 15,111)
( 16,112)( 17,117)( 18,118)( 19,119)( 20,120)( 21,113)( 22,114)( 23,115)
( 24,116)( 25,133)( 26,134)( 27,135)( 28,136)( 29,141)( 30,142)( 31,143)
( 32,144)( 33,137)( 34,138)( 35,139)( 36,140)( 37,157)( 38,158)( 39,159)
( 40,160)( 41,165)( 42,166)( 43,167)( 44,168)( 45,161)( 46,162)( 47,163)
( 48,164)( 49,145)( 50,146)( 51,147)( 52,148)( 53,153)( 54,154)( 55,155)
( 56,156)( 57,149)( 58,150)( 59,151)( 60,152)( 61,169)( 62,170)( 63,171)
( 64,172)( 65,177)( 66,178)( 67,179)( 68,180)( 69,173)( 70,174)( 71,175)
( 72,176)( 73,193)( 74,194)( 75,195)( 76,196)( 77,201)( 78,202)( 79,203)
( 80,204)( 81,197)( 82,198)( 83,199)( 84,200)( 85,181)( 86,182)( 87,183)
( 88,184)( 89,189)( 90,190)( 91,191)( 92,192)( 93,185)( 94,186)( 95,187)
( 96,188)( 97,205)( 98,206)( 99,207)(100,208)(101,213)(102,214)(103,215)
(104,216)(105,209)(106,210)(107,211)(108,212);
s2 := Sym(216)!( 1, 37)( 2, 38)( 3, 40)( 4, 39)( 5, 45)( 6, 46)( 7, 48)
( 8, 47)( 9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 53)( 14, 54)( 15, 56)
( 16, 55)( 17, 49)( 18, 50)( 19, 52)( 20, 51)( 21, 57)( 22, 58)( 23, 60)
( 24, 59)( 25, 69)( 26, 70)( 27, 72)( 28, 71)( 29, 65)( 30, 66)( 31, 68)
( 32, 67)( 33, 61)( 34, 62)( 35, 64)( 36, 63)( 75, 76)( 77, 81)( 78, 82)
( 79, 84)( 80, 83)( 85, 89)( 86, 90)( 87, 92)( 88, 91)( 95, 96)( 97,105)
( 98,106)( 99,108)(100,107)(103,104)(109,145)(110,146)(111,148)(112,147)
(113,153)(114,154)(115,156)(116,155)(117,149)(118,150)(119,152)(120,151)
(121,161)(122,162)(123,164)(124,163)(125,157)(126,158)(127,160)(128,159)
(129,165)(130,166)(131,168)(132,167)(133,177)(134,178)(135,180)(136,179)
(137,173)(138,174)(139,176)(140,175)(141,169)(142,170)(143,172)(144,171)
(183,184)(185,189)(186,190)(187,192)(188,191)(193,197)(194,198)(195,200)
(196,199)(203,204)(205,213)(206,214)(207,216)(208,215)(211,212);
s3 := Sym(216)!( 2, 3)( 5, 9)( 6, 11)( 7, 10)( 8, 12)( 14, 15)( 17, 21)
( 18, 23)( 19, 22)( 20, 24)( 26, 27)( 29, 33)( 30, 35)( 31, 34)( 32, 36)
( 37, 73)( 38, 75)( 39, 74)( 40, 76)( 41, 81)( 42, 83)( 43, 82)( 44, 84)
( 45, 77)( 46, 79)( 47, 78)( 48, 80)( 49, 85)( 50, 87)( 51, 86)( 52, 88)
( 53, 93)( 54, 95)( 55, 94)( 56, 96)( 57, 89)( 58, 91)( 59, 90)( 60, 92)
( 61, 97)( 62, 99)( 63, 98)( 64,100)( 65,105)( 66,107)( 67,106)( 68,108)
( 69,101)( 70,103)( 71,102)( 72,104)(110,111)(113,117)(114,119)(115,118)
(116,120)(122,123)(125,129)(126,131)(127,130)(128,132)(134,135)(137,141)
(138,143)(139,142)(140,144)(145,181)(146,183)(147,182)(148,184)(149,189)
(150,191)(151,190)(152,192)(153,185)(154,187)(155,186)(156,188)(157,193)
(158,195)(159,194)(160,196)(161,201)(162,203)(163,202)(164,204)(165,197)
(166,199)(167,198)(168,200)(169,205)(170,207)(171,206)(172,208)(173,213)
(174,215)(175,214)(176,216)(177,209)(178,211)(179,210)(180,212);
s4 := Sym(216)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)
(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)
(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)
(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)
(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)
(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)
(207,208)(209,210)(211,212)(213,214)(215,216);
poly := sub<Sym(216)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s4*s3*s2*s4*s3*s2*s4*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope