include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,3,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,3,6,6}*1728a
if this polytope has a name.
Group : SmallGroup(1728,46116)
Rank : 6
Schlafli Type : {2,4,3,6,6}
Number of vertices, edges, etc : 2, 4, 6, 9, 18, 6
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,3,6,3}*864
3-fold quotients : {2,4,3,2,6}*576
6-fold quotients : {2,4,3,2,3}*288
9-fold quotients : {2,4,3,2,2}*192
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 5)( 4, 6)( 7, 9)( 8, 10)( 11, 13)( 12, 14)( 15, 17)( 16, 18)
( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)( 32, 34)
( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)( 48, 50)
( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)( 64, 66)
( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)( 80, 82)
( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)( 96, 98)
( 99,101)(100,102)(103,105)(104,106)(107,109)(108,110)(111,113)(112,114)
(115,117)(116,118)(119,121)(120,122)(123,125)(124,126)(127,129)(128,130)
(131,133)(132,134)(135,137)(136,138)(139,141)(140,142)(143,145)(144,146)
(147,149)(148,150)(151,153)(152,154)(155,157)(156,158)(159,161)(160,162)
(163,165)(164,166)(167,169)(168,170)(171,173)(172,174)(175,177)(176,178)
(179,181)(180,182)(183,185)(184,186)(187,189)(188,190)(191,193)(192,194)
(195,197)(196,198)(199,201)(200,202)(203,205)(204,206)(207,209)(208,210)
(211,213)(212,214)(215,217)(216,218);;
s2 := ( 4, 5)( 7, 11)( 8, 13)( 9, 12)( 10, 14)( 16, 17)( 19, 23)( 20, 25)
( 21, 24)( 22, 26)( 28, 29)( 31, 35)( 32, 37)( 33, 36)( 34, 38)( 39, 75)
( 40, 77)( 41, 76)( 42, 78)( 43, 83)( 44, 85)( 45, 84)( 46, 86)( 47, 79)
( 48, 81)( 49, 80)( 50, 82)( 51, 87)( 52, 89)( 53, 88)( 54, 90)( 55, 95)
( 56, 97)( 57, 96)( 58, 98)( 59, 91)( 60, 93)( 61, 92)( 62, 94)( 63, 99)
( 64,101)( 65,100)( 66,102)( 67,107)( 68,109)( 69,108)( 70,110)( 71,103)
( 72,105)( 73,104)( 74,106)(112,113)(115,119)(116,121)(117,120)(118,122)
(124,125)(127,131)(128,133)(129,132)(130,134)(136,137)(139,143)(140,145)
(141,144)(142,146)(147,183)(148,185)(149,184)(150,186)(151,191)(152,193)
(153,192)(154,194)(155,187)(156,189)(157,188)(158,190)(159,195)(160,197)
(161,196)(162,198)(163,203)(164,205)(165,204)(166,206)(167,199)(168,201)
(169,200)(170,202)(171,207)(172,209)(173,208)(174,210)(175,215)(176,217)
(177,216)(178,218)(179,211)(180,213)(181,212)(182,214);;
s3 := ( 3, 75)( 4, 78)( 5, 77)( 6, 76)( 7, 83)( 8, 86)( 9, 85)( 10, 84)
( 11, 79)( 12, 82)( 13, 81)( 14, 80)( 15, 95)( 16, 98)( 17, 97)( 18, 96)
( 19, 91)( 20, 94)( 21, 93)( 22, 92)( 23, 87)( 24, 90)( 25, 89)( 26, 88)
( 27,103)( 28,106)( 29,105)( 30,104)( 31, 99)( 32,102)( 33,101)( 34,100)
( 35,107)( 36,110)( 37,109)( 38,108)( 40, 42)( 43, 47)( 44, 50)( 45, 49)
( 46, 48)( 51, 59)( 52, 62)( 53, 61)( 54, 60)( 56, 58)( 63, 67)( 64, 70)
( 65, 69)( 66, 68)( 72, 74)(111,183)(112,186)(113,185)(114,184)(115,191)
(116,194)(117,193)(118,192)(119,187)(120,190)(121,189)(122,188)(123,203)
(124,206)(125,205)(126,204)(127,199)(128,202)(129,201)(130,200)(131,195)
(132,198)(133,197)(134,196)(135,211)(136,214)(137,213)(138,212)(139,207)
(140,210)(141,209)(142,208)(143,215)(144,218)(145,217)(146,216)(148,150)
(151,155)(152,158)(153,157)(154,156)(159,167)(160,170)(161,169)(162,168)
(164,166)(171,175)(172,178)(173,177)(174,176)(180,182);;
s4 := ( 3, 15)( 4, 16)( 5, 17)( 6, 18)( 7, 23)( 8, 24)( 9, 25)( 10, 26)
( 11, 19)( 12, 20)( 13, 21)( 14, 22)( 31, 35)( 32, 36)( 33, 37)( 34, 38)
( 39, 51)( 40, 52)( 41, 53)( 42, 54)( 43, 59)( 44, 60)( 45, 61)( 46, 62)
( 47, 55)( 48, 56)( 49, 57)( 50, 58)( 67, 71)( 68, 72)( 69, 73)( 70, 74)
( 75, 87)( 76, 88)( 77, 89)( 78, 90)( 79, 95)( 80, 96)( 81, 97)( 82, 98)
( 83, 91)( 84, 92)( 85, 93)( 86, 94)(103,107)(104,108)(105,109)(106,110)
(111,123)(112,124)(113,125)(114,126)(115,131)(116,132)(117,133)(118,134)
(119,127)(120,128)(121,129)(122,130)(139,143)(140,144)(141,145)(142,146)
(147,159)(148,160)(149,161)(150,162)(151,167)(152,168)(153,169)(154,170)
(155,163)(156,164)(157,165)(158,166)(175,179)(176,180)(177,181)(178,182)
(183,195)(184,196)(185,197)(186,198)(187,203)(188,204)(189,205)(190,206)
(191,199)(192,200)(193,201)(194,202)(211,215)(212,216)(213,217)(214,218);;
s5 := ( 3,111)( 4,112)( 5,113)( 6,114)( 7,119)( 8,120)( 9,121)( 10,122)
( 11,115)( 12,116)( 13,117)( 14,118)( 15,135)( 16,136)( 17,137)( 18,138)
( 19,143)( 20,144)( 21,145)( 22,146)( 23,139)( 24,140)( 25,141)( 26,142)
( 27,123)( 28,124)( 29,125)( 30,126)( 31,131)( 32,132)( 33,133)( 34,134)
( 35,127)( 36,128)( 37,129)( 38,130)( 39,147)( 40,148)( 41,149)( 42,150)
( 43,155)( 44,156)( 45,157)( 46,158)( 47,151)( 48,152)( 49,153)( 50,154)
( 51,171)( 52,172)( 53,173)( 54,174)( 55,179)( 56,180)( 57,181)( 58,182)
( 59,175)( 60,176)( 61,177)( 62,178)( 63,159)( 64,160)( 65,161)( 66,162)
( 67,167)( 68,168)( 69,169)( 70,170)( 71,163)( 72,164)( 73,165)( 74,166)
( 75,183)( 76,184)( 77,185)( 78,186)( 79,191)( 80,192)( 81,193)( 82,194)
( 83,187)( 84,188)( 85,189)( 86,190)( 87,207)( 88,208)( 89,209)( 90,210)
( 91,215)( 92,216)( 93,217)( 94,218)( 95,211)( 96,212)( 97,213)( 98,214)
( 99,195)(100,196)(101,197)(102,198)(103,203)(104,204)(105,205)(106,206)
(107,199)(108,200)(109,201)(110,202);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s5*s3*s4*s3*s4*s5*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(218)!(1,2);
s1 := Sym(218)!( 3, 5)( 4, 6)( 7, 9)( 8, 10)( 11, 13)( 12, 14)( 15, 17)
( 16, 18)( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)
( 32, 34)( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)
( 48, 50)( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)
( 64, 66)( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)
( 80, 82)( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)
( 96, 98)( 99,101)(100,102)(103,105)(104,106)(107,109)(108,110)(111,113)
(112,114)(115,117)(116,118)(119,121)(120,122)(123,125)(124,126)(127,129)
(128,130)(131,133)(132,134)(135,137)(136,138)(139,141)(140,142)(143,145)
(144,146)(147,149)(148,150)(151,153)(152,154)(155,157)(156,158)(159,161)
(160,162)(163,165)(164,166)(167,169)(168,170)(171,173)(172,174)(175,177)
(176,178)(179,181)(180,182)(183,185)(184,186)(187,189)(188,190)(191,193)
(192,194)(195,197)(196,198)(199,201)(200,202)(203,205)(204,206)(207,209)
(208,210)(211,213)(212,214)(215,217)(216,218);
s2 := Sym(218)!( 4, 5)( 7, 11)( 8, 13)( 9, 12)( 10, 14)( 16, 17)( 19, 23)
( 20, 25)( 21, 24)( 22, 26)( 28, 29)( 31, 35)( 32, 37)( 33, 36)( 34, 38)
( 39, 75)( 40, 77)( 41, 76)( 42, 78)( 43, 83)( 44, 85)( 45, 84)( 46, 86)
( 47, 79)( 48, 81)( 49, 80)( 50, 82)( 51, 87)( 52, 89)( 53, 88)( 54, 90)
( 55, 95)( 56, 97)( 57, 96)( 58, 98)( 59, 91)( 60, 93)( 61, 92)( 62, 94)
( 63, 99)( 64,101)( 65,100)( 66,102)( 67,107)( 68,109)( 69,108)( 70,110)
( 71,103)( 72,105)( 73,104)( 74,106)(112,113)(115,119)(116,121)(117,120)
(118,122)(124,125)(127,131)(128,133)(129,132)(130,134)(136,137)(139,143)
(140,145)(141,144)(142,146)(147,183)(148,185)(149,184)(150,186)(151,191)
(152,193)(153,192)(154,194)(155,187)(156,189)(157,188)(158,190)(159,195)
(160,197)(161,196)(162,198)(163,203)(164,205)(165,204)(166,206)(167,199)
(168,201)(169,200)(170,202)(171,207)(172,209)(173,208)(174,210)(175,215)
(176,217)(177,216)(178,218)(179,211)(180,213)(181,212)(182,214);
s3 := Sym(218)!( 3, 75)( 4, 78)( 5, 77)( 6, 76)( 7, 83)( 8, 86)( 9, 85)
( 10, 84)( 11, 79)( 12, 82)( 13, 81)( 14, 80)( 15, 95)( 16, 98)( 17, 97)
( 18, 96)( 19, 91)( 20, 94)( 21, 93)( 22, 92)( 23, 87)( 24, 90)( 25, 89)
( 26, 88)( 27,103)( 28,106)( 29,105)( 30,104)( 31, 99)( 32,102)( 33,101)
( 34,100)( 35,107)( 36,110)( 37,109)( 38,108)( 40, 42)( 43, 47)( 44, 50)
( 45, 49)( 46, 48)( 51, 59)( 52, 62)( 53, 61)( 54, 60)( 56, 58)( 63, 67)
( 64, 70)( 65, 69)( 66, 68)( 72, 74)(111,183)(112,186)(113,185)(114,184)
(115,191)(116,194)(117,193)(118,192)(119,187)(120,190)(121,189)(122,188)
(123,203)(124,206)(125,205)(126,204)(127,199)(128,202)(129,201)(130,200)
(131,195)(132,198)(133,197)(134,196)(135,211)(136,214)(137,213)(138,212)
(139,207)(140,210)(141,209)(142,208)(143,215)(144,218)(145,217)(146,216)
(148,150)(151,155)(152,158)(153,157)(154,156)(159,167)(160,170)(161,169)
(162,168)(164,166)(171,175)(172,178)(173,177)(174,176)(180,182);
s4 := Sym(218)!( 3, 15)( 4, 16)( 5, 17)( 6, 18)( 7, 23)( 8, 24)( 9, 25)
( 10, 26)( 11, 19)( 12, 20)( 13, 21)( 14, 22)( 31, 35)( 32, 36)( 33, 37)
( 34, 38)( 39, 51)( 40, 52)( 41, 53)( 42, 54)( 43, 59)( 44, 60)( 45, 61)
( 46, 62)( 47, 55)( 48, 56)( 49, 57)( 50, 58)( 67, 71)( 68, 72)( 69, 73)
( 70, 74)( 75, 87)( 76, 88)( 77, 89)( 78, 90)( 79, 95)( 80, 96)( 81, 97)
( 82, 98)( 83, 91)( 84, 92)( 85, 93)( 86, 94)(103,107)(104,108)(105,109)
(106,110)(111,123)(112,124)(113,125)(114,126)(115,131)(116,132)(117,133)
(118,134)(119,127)(120,128)(121,129)(122,130)(139,143)(140,144)(141,145)
(142,146)(147,159)(148,160)(149,161)(150,162)(151,167)(152,168)(153,169)
(154,170)(155,163)(156,164)(157,165)(158,166)(175,179)(176,180)(177,181)
(178,182)(183,195)(184,196)(185,197)(186,198)(187,203)(188,204)(189,205)
(190,206)(191,199)(192,200)(193,201)(194,202)(211,215)(212,216)(213,217)
(214,218);
s5 := Sym(218)!( 3,111)( 4,112)( 5,113)( 6,114)( 7,119)( 8,120)( 9,121)
( 10,122)( 11,115)( 12,116)( 13,117)( 14,118)( 15,135)( 16,136)( 17,137)
( 18,138)( 19,143)( 20,144)( 21,145)( 22,146)( 23,139)( 24,140)( 25,141)
( 26,142)( 27,123)( 28,124)( 29,125)( 30,126)( 31,131)( 32,132)( 33,133)
( 34,134)( 35,127)( 36,128)( 37,129)( 38,130)( 39,147)( 40,148)( 41,149)
( 42,150)( 43,155)( 44,156)( 45,157)( 46,158)( 47,151)( 48,152)( 49,153)
( 50,154)( 51,171)( 52,172)( 53,173)( 54,174)( 55,179)( 56,180)( 57,181)
( 58,182)( 59,175)( 60,176)( 61,177)( 62,178)( 63,159)( 64,160)( 65,161)
( 66,162)( 67,167)( 68,168)( 69,169)( 70,170)( 71,163)( 72,164)( 73,165)
( 74,166)( 75,183)( 76,184)( 77,185)( 78,186)( 79,191)( 80,192)( 81,193)
( 82,194)( 83,187)( 84,188)( 85,189)( 86,190)( 87,207)( 88,208)( 89,209)
( 90,210)( 91,215)( 92,216)( 93,217)( 94,218)( 95,211)( 96,212)( 97,213)
( 98,214)( 99,195)(100,196)(101,197)(102,198)(103,203)(104,204)(105,205)
(106,206)(107,199)(108,200)(109,201)(110,202);
poly := sub<Sym(218)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3,
s5*s3*s4*s3*s4*s5*s3*s4*s3*s4, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >;
to this polytope