include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,6,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,6,2,2}*1728a
if this polytope has a name.
Group : SmallGroup(1728,46165)
Rank : 6
Schlafli Type : {6,6,6,2,2}
Number of vertices, edges, etc : 6, 18, 18, 6, 2, 2
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,6,6,2,2}*864a, {6,6,3,2,2}*864a
3-fold quotients : {6,2,6,2,2}*576
4-fold quotients : {3,6,3,2,2}*432
6-fold quotients : {3,2,6,2,2}*288, {6,2,3,2,2}*288
9-fold quotients : {2,2,6,2,2}*192, {6,2,2,2,2}*192
12-fold quotients : {3,2,3,2,2}*144
18-fold quotients : {2,2,3,2,2}*96, {3,2,2,2,2}*96
27-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)( 33, 35)
( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 47, 48)( 49, 52)( 50, 54)( 51, 53)
( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 65, 66)( 67, 70)( 68, 72)( 69, 71)
( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 83, 84)( 85, 88)( 86, 90)( 87, 89)
( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)(103,106)(104,108)(105,107);;
s1 := ( 1, 58)( 2, 60)( 3, 59)( 4, 55)( 5, 57)( 6, 56)( 7, 61)( 8, 63)
( 9, 62)( 10, 67)( 11, 69)( 12, 68)( 13, 64)( 14, 66)( 15, 65)( 16, 70)
( 17, 72)( 18, 71)( 19, 76)( 20, 78)( 21, 77)( 22, 73)( 23, 75)( 24, 74)
( 25, 79)( 26, 81)( 27, 80)( 28, 85)( 29, 87)( 30, 86)( 31, 82)( 32, 84)
( 33, 83)( 34, 88)( 35, 90)( 36, 89)( 37, 94)( 38, 96)( 39, 95)( 40, 91)
( 41, 93)( 42, 92)( 43, 97)( 44, 99)( 45, 98)( 46,103)( 47,105)( 48,104)
( 49,100)( 50,102)( 51,101)( 52,106)( 53,108)( 54,107);;
s2 := ( 1, 10)( 2, 12)( 3, 11)( 4, 14)( 5, 13)( 6, 15)( 7, 18)( 8, 17)
( 9, 16)( 20, 21)( 22, 23)( 25, 27)( 28, 37)( 29, 39)( 30, 38)( 31, 41)
( 32, 40)( 33, 42)( 34, 45)( 35, 44)( 36, 43)( 47, 48)( 49, 50)( 52, 54)
( 55, 64)( 56, 66)( 57, 65)( 58, 68)( 59, 67)( 60, 69)( 61, 72)( 62, 71)
( 63, 70)( 74, 75)( 76, 77)( 79, 81)( 82, 91)( 83, 93)( 84, 92)( 85, 95)
( 86, 94)( 87, 96)( 88, 99)( 89, 98)( 90, 97)(101,102)(103,104)(106,108);;
s3 := ( 1, 28)( 2, 30)( 3, 29)( 4, 31)( 5, 33)( 6, 32)( 7, 34)( 8, 36)
( 9, 35)( 10, 46)( 11, 48)( 12, 47)( 13, 49)( 14, 51)( 15, 50)( 16, 52)
( 17, 54)( 18, 53)( 19, 37)( 20, 39)( 21, 38)( 22, 40)( 23, 42)( 24, 41)
( 25, 43)( 26, 45)( 27, 44)( 55, 82)( 56, 84)( 57, 83)( 58, 85)( 59, 87)
( 60, 86)( 61, 88)( 62, 90)( 63, 89)( 64,100)( 65,102)( 66,101)( 67,103)
( 68,105)( 69,104)( 70,106)( 71,108)( 72,107)( 73, 91)( 74, 93)( 75, 92)
( 76, 94)( 77, 96)( 78, 95)( 79, 97)( 80, 99)( 81, 98);;
s4 := (109,110);;
s5 := (111,112);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(112)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 47, 48)( 49, 52)( 50, 54)
( 51, 53)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 65, 66)( 67, 70)( 68, 72)
( 69, 71)( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 83, 84)( 85, 88)( 86, 90)
( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)(103,106)(104,108)
(105,107);
s1 := Sym(112)!( 1, 58)( 2, 60)( 3, 59)( 4, 55)( 5, 57)( 6, 56)( 7, 61)
( 8, 63)( 9, 62)( 10, 67)( 11, 69)( 12, 68)( 13, 64)( 14, 66)( 15, 65)
( 16, 70)( 17, 72)( 18, 71)( 19, 76)( 20, 78)( 21, 77)( 22, 73)( 23, 75)
( 24, 74)( 25, 79)( 26, 81)( 27, 80)( 28, 85)( 29, 87)( 30, 86)( 31, 82)
( 32, 84)( 33, 83)( 34, 88)( 35, 90)( 36, 89)( 37, 94)( 38, 96)( 39, 95)
( 40, 91)( 41, 93)( 42, 92)( 43, 97)( 44, 99)( 45, 98)( 46,103)( 47,105)
( 48,104)( 49,100)( 50,102)( 51,101)( 52,106)( 53,108)( 54,107);
s2 := Sym(112)!( 1, 10)( 2, 12)( 3, 11)( 4, 14)( 5, 13)( 6, 15)( 7, 18)
( 8, 17)( 9, 16)( 20, 21)( 22, 23)( 25, 27)( 28, 37)( 29, 39)( 30, 38)
( 31, 41)( 32, 40)( 33, 42)( 34, 45)( 35, 44)( 36, 43)( 47, 48)( 49, 50)
( 52, 54)( 55, 64)( 56, 66)( 57, 65)( 58, 68)( 59, 67)( 60, 69)( 61, 72)
( 62, 71)( 63, 70)( 74, 75)( 76, 77)( 79, 81)( 82, 91)( 83, 93)( 84, 92)
( 85, 95)( 86, 94)( 87, 96)( 88, 99)( 89, 98)( 90, 97)(101,102)(103,104)
(106,108);
s3 := Sym(112)!( 1, 28)( 2, 30)( 3, 29)( 4, 31)( 5, 33)( 6, 32)( 7, 34)
( 8, 36)( 9, 35)( 10, 46)( 11, 48)( 12, 47)( 13, 49)( 14, 51)( 15, 50)
( 16, 52)( 17, 54)( 18, 53)( 19, 37)( 20, 39)( 21, 38)( 22, 40)( 23, 42)
( 24, 41)( 25, 43)( 26, 45)( 27, 44)( 55, 82)( 56, 84)( 57, 83)( 58, 85)
( 59, 87)( 60, 86)( 61, 88)( 62, 90)( 63, 89)( 64,100)( 65,102)( 66,101)
( 67,103)( 68,105)( 69,104)( 70,106)( 71,108)( 72,107)( 73, 91)( 74, 93)
( 75, 92)( 76, 94)( 77, 96)( 78, 95)( 79, 97)( 80, 99)( 81, 98);
s4 := Sym(112)!(109,110);
s5 := Sym(112)!(111,112);
poly := sub<Sym(112)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope