include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,3,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,3,2,2}*864a
if this polytope has a name.
Group : SmallGroup(864,4033)
Rank : 6
Schlafli Type : {6,6,3,2,2}
Number of vertices, edges, etc : 6, 18, 9, 3, 2, 2
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,6,3,2,2,2} of size 1728
Vertex Figure Of :
{2,6,6,3,2,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,6,3,2,2}*432
3-fold quotients : {6,2,3,2,2}*288
6-fold quotients : {3,2,3,2,2}*144
9-fold quotients : {2,2,3,2,2}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,6,3,2,2}*1728a, {6,6,3,2,4}*1728a, {6,6,6,2,2}*1728a
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18);;
s1 := ( 1,10)( 2,12)( 3,11)( 4,14)( 5,13)( 6,15)( 7,18)( 8,17)( 9,16);;
s2 := ( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18);;
s3 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17);;
s4 := (19,20);;
s5 := (21,22);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(22)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18);
s1 := Sym(22)!( 1,10)( 2,12)( 3,11)( 4,14)( 5,13)( 6,15)( 7,18)( 8,17)( 9,16);
s2 := Sym(22)!( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18);
s3 := Sym(22)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17);
s4 := Sym(22)!(19,20);
s5 := Sym(22)!(21,22);
poly := sub<Sym(22)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope