include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,12}*1728c
if this polytope has a name.
Group : SmallGroup(1728,46611)
Rank : 4
Schlafli Type : {2,4,12}
Number of vertices, edges, etc : 2, 36, 216, 108
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,6}*864b
3-fold quotients : {2,4,12}*576
6-fold quotients : {2,4,6}*288
9-fold quotients : {2,4,12}*192a
12-fold quotients : {2,4,6}*144
18-fold quotients : {2,2,12}*96, {2,4,6}*96a
27-fold quotients : {2,4,4}*64
36-fold quotients : {2,2,6}*48
54-fold quotients : {2,2,4}*32, {2,4,2}*32
72-fold quotients : {2,2,3}*24
108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 6, 24)( 7, 25)( 8, 26)( 9, 18)( 10, 19)( 11, 20)( 12, 21)( 13, 22)
( 14, 23)( 33, 51)( 34, 52)( 35, 53)( 36, 45)( 37, 46)( 38, 47)( 39, 48)
( 40, 49)( 41, 50)( 60, 78)( 61, 79)( 62, 80)( 63, 72)( 64, 73)( 65, 74)
( 66, 75)( 67, 76)( 68, 77)( 87,105)( 88,106)( 89,107)( 90, 99)( 91,100)
( 92,101)( 93,102)( 94,103)( 95,104)(111,165)(112,166)(113,167)(114,186)
(115,187)(116,188)(117,180)(118,181)(119,182)(120,183)(121,184)(122,185)
(123,177)(124,178)(125,179)(126,171)(127,172)(128,173)(129,174)(130,175)
(131,176)(132,168)(133,169)(134,170)(135,189)(136,190)(137,191)(138,192)
(139,193)(140,194)(141,213)(142,214)(143,215)(144,207)(145,208)(146,209)
(147,210)(148,211)(149,212)(150,204)(151,205)(152,206)(153,198)(154,199)
(155,200)(156,201)(157,202)(158,203)(159,195)(160,196)(161,197)(162,216)
(163,217)(164,218);;
s2 := ( 3,111)( 4,113)( 5,112)( 6,114)( 7,116)( 8,115)( 9,117)( 10,119)
( 11,118)( 12,135)( 13,137)( 14,136)( 15,129)( 16,131)( 17,130)( 18,132)
( 19,134)( 20,133)( 21,123)( 22,125)( 23,124)( 24,126)( 25,128)( 26,127)
( 27,120)( 28,122)( 29,121)( 30,138)( 31,140)( 32,139)( 33,141)( 34,143)
( 35,142)( 36,144)( 37,146)( 38,145)( 39,162)( 40,164)( 41,163)( 42,156)
( 43,158)( 44,157)( 45,159)( 46,161)( 47,160)( 48,150)( 49,152)( 50,151)
( 51,153)( 52,155)( 53,154)( 54,147)( 55,149)( 56,148)( 57,165)( 58,167)
( 59,166)( 60,168)( 61,170)( 62,169)( 63,171)( 64,173)( 65,172)( 66,189)
( 67,191)( 68,190)( 69,183)( 70,185)( 71,184)( 72,186)( 73,188)( 74,187)
( 75,177)( 76,179)( 77,178)( 78,180)( 79,182)( 80,181)( 81,174)( 82,176)
( 83,175)( 84,192)( 85,194)( 86,193)( 87,195)( 88,197)( 89,196)( 90,198)
( 91,200)( 92,199)( 93,216)( 94,218)( 95,217)( 96,210)( 97,212)( 98,211)
( 99,213)(100,215)(101,214)(102,204)(103,206)(104,205)(105,207)(106,209)
(107,208)(108,201)(109,203)(110,202);;
s3 := ( 3, 70)( 4, 69)( 5, 71)( 6, 67)( 7, 66)( 8, 68)( 9, 73)( 10, 72)
( 11, 74)( 12, 61)( 13, 60)( 14, 62)( 15, 58)( 16, 57)( 17, 59)( 18, 64)
( 19, 63)( 20, 65)( 21, 79)( 22, 78)( 23, 80)( 24, 76)( 25, 75)( 26, 77)
( 27, 82)( 28, 81)( 29, 83)( 30, 97)( 31, 96)( 32, 98)( 33, 94)( 34, 93)
( 35, 95)( 36,100)( 37, 99)( 38,101)( 39, 88)( 40, 87)( 41, 89)( 42, 85)
( 43, 84)( 44, 86)( 45, 91)( 46, 90)( 47, 92)( 48,106)( 49,105)( 50,107)
( 51,103)( 52,102)( 53,104)( 54,109)( 55,108)( 56,110)(111,205)(112,204)
(113,206)(114,202)(115,201)(116,203)(117,208)(118,207)(119,209)(120,196)
(121,195)(122,197)(123,193)(124,192)(125,194)(126,199)(127,198)(128,200)
(129,214)(130,213)(131,215)(132,211)(133,210)(134,212)(135,217)(136,216)
(137,218)(138,178)(139,177)(140,179)(141,175)(142,174)(143,176)(144,181)
(145,180)(146,182)(147,169)(148,168)(149,170)(150,166)(151,165)(152,167)
(153,172)(154,171)(155,173)(156,187)(157,186)(158,188)(159,184)(160,183)
(161,185)(162,190)(163,189)(164,191);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s2*s1*s2*s3*s2*s3*s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(218)!(1,2);
s1 := Sym(218)!( 6, 24)( 7, 25)( 8, 26)( 9, 18)( 10, 19)( 11, 20)( 12, 21)
( 13, 22)( 14, 23)( 33, 51)( 34, 52)( 35, 53)( 36, 45)( 37, 46)( 38, 47)
( 39, 48)( 40, 49)( 41, 50)( 60, 78)( 61, 79)( 62, 80)( 63, 72)( 64, 73)
( 65, 74)( 66, 75)( 67, 76)( 68, 77)( 87,105)( 88,106)( 89,107)( 90, 99)
( 91,100)( 92,101)( 93,102)( 94,103)( 95,104)(111,165)(112,166)(113,167)
(114,186)(115,187)(116,188)(117,180)(118,181)(119,182)(120,183)(121,184)
(122,185)(123,177)(124,178)(125,179)(126,171)(127,172)(128,173)(129,174)
(130,175)(131,176)(132,168)(133,169)(134,170)(135,189)(136,190)(137,191)
(138,192)(139,193)(140,194)(141,213)(142,214)(143,215)(144,207)(145,208)
(146,209)(147,210)(148,211)(149,212)(150,204)(151,205)(152,206)(153,198)
(154,199)(155,200)(156,201)(157,202)(158,203)(159,195)(160,196)(161,197)
(162,216)(163,217)(164,218);
s2 := Sym(218)!( 3,111)( 4,113)( 5,112)( 6,114)( 7,116)( 8,115)( 9,117)
( 10,119)( 11,118)( 12,135)( 13,137)( 14,136)( 15,129)( 16,131)( 17,130)
( 18,132)( 19,134)( 20,133)( 21,123)( 22,125)( 23,124)( 24,126)( 25,128)
( 26,127)( 27,120)( 28,122)( 29,121)( 30,138)( 31,140)( 32,139)( 33,141)
( 34,143)( 35,142)( 36,144)( 37,146)( 38,145)( 39,162)( 40,164)( 41,163)
( 42,156)( 43,158)( 44,157)( 45,159)( 46,161)( 47,160)( 48,150)( 49,152)
( 50,151)( 51,153)( 52,155)( 53,154)( 54,147)( 55,149)( 56,148)( 57,165)
( 58,167)( 59,166)( 60,168)( 61,170)( 62,169)( 63,171)( 64,173)( 65,172)
( 66,189)( 67,191)( 68,190)( 69,183)( 70,185)( 71,184)( 72,186)( 73,188)
( 74,187)( 75,177)( 76,179)( 77,178)( 78,180)( 79,182)( 80,181)( 81,174)
( 82,176)( 83,175)( 84,192)( 85,194)( 86,193)( 87,195)( 88,197)( 89,196)
( 90,198)( 91,200)( 92,199)( 93,216)( 94,218)( 95,217)( 96,210)( 97,212)
( 98,211)( 99,213)(100,215)(101,214)(102,204)(103,206)(104,205)(105,207)
(106,209)(107,208)(108,201)(109,203)(110,202);
s3 := Sym(218)!( 3, 70)( 4, 69)( 5, 71)( 6, 67)( 7, 66)( 8, 68)( 9, 73)
( 10, 72)( 11, 74)( 12, 61)( 13, 60)( 14, 62)( 15, 58)( 16, 57)( 17, 59)
( 18, 64)( 19, 63)( 20, 65)( 21, 79)( 22, 78)( 23, 80)( 24, 76)( 25, 75)
( 26, 77)( 27, 82)( 28, 81)( 29, 83)( 30, 97)( 31, 96)( 32, 98)( 33, 94)
( 34, 93)( 35, 95)( 36,100)( 37, 99)( 38,101)( 39, 88)( 40, 87)( 41, 89)
( 42, 85)( 43, 84)( 44, 86)( 45, 91)( 46, 90)( 47, 92)( 48,106)( 49,105)
( 50,107)( 51,103)( 52,102)( 53,104)( 54,109)( 55,108)( 56,110)(111,205)
(112,204)(113,206)(114,202)(115,201)(116,203)(117,208)(118,207)(119,209)
(120,196)(121,195)(122,197)(123,193)(124,192)(125,194)(126,199)(127,198)
(128,200)(129,214)(130,213)(131,215)(132,211)(133,210)(134,212)(135,217)
(136,216)(137,218)(138,178)(139,177)(140,179)(141,175)(142,174)(143,176)
(144,181)(145,180)(146,182)(147,169)(148,168)(149,170)(150,166)(151,165)
(152,167)(153,172)(154,171)(155,173)(156,187)(157,186)(158,188)(159,184)
(160,183)(161,185)(162,190)(163,189)(164,191);
poly := sub<Sym(218)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s1*s2*s3*s2*s3*s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope