include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,12}*576
if this polytope has a name.
Group : SmallGroup(576,8418)
Rank : 4
Schlafli Type : {2,4,12}
Number of vertices, edges, etc : 2, 12, 72, 36
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,4,12,2} of size 1152
Vertex Figure Of :
{2,2,4,12} of size 1152
{3,2,4,12} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,6}*288
4-fold quotients : {2,4,6}*144
9-fold quotients : {2,4,4}*64
18-fold quotients : {2,2,4}*32, {2,4,2}*32
36-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,4,12}*1152, {2,4,24}*1152a, {2,8,12}*1152a, {2,4,24}*1152b, {2,8,12}*1152b, {2,4,12}*1152
3-fold covers : {2,4,12}*1728b, {2,12,12}*1728d, {2,12,12}*1728e, {2,4,12}*1728c, {2,12,12}*1728i, {6,4,12}*1728b, {2,12,12}*1728k
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (10,11)(13,14);;
s2 := ( 3, 9)( 4,10)( 5,11)( 6,12)( 7,13)( 8,14);;
s3 := ( 3, 4)( 6, 7)( 9,12)(10,14)(11,13);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(14)!(1,2);
s1 := Sym(14)!(10,11)(13,14);
s2 := Sym(14)!( 3, 9)( 4,10)( 5,11)( 6,12)( 7,13)( 8,14);
s3 := Sym(14)!( 3, 4)( 6, 7)( 9,12)(10,14)(11,13);
poly := sub<Sym(14)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2 >;
to this polytope