Polytope of Type {4,6,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,4}*1728c
if this polytope has a name.
Group : SmallGroup(1728,46672)
Rank : 4
Schlafli Type : {4,6,4}
Number of vertices, edges, etc : 36, 108, 108, 4
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,6,2}*864b
   3-fold quotients : {4,6,4}*576a
   6-fold quotients : {4,6,2}*288
   9-fold quotients : {4,6,4}*192a
   12-fold quotients : {4,6,2}*144
   18-fold quotients : {2,6,4}*96a, {4,6,2}*96a
   27-fold quotients : {4,2,4}*64
   36-fold quotients : {2,6,2}*48
   54-fold quotients : {2,2,4}*32, {4,2,2}*32
   72-fold quotients : {2,3,2}*24
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  8)(  3,  6)(  4,  7)( 11, 17)( 12, 15)( 13, 16)( 20, 26)( 21, 24)
( 22, 25)( 29, 35)( 30, 33)( 31, 34)( 38, 44)( 39, 42)( 40, 43)( 47, 53)
( 48, 51)( 49, 52)( 56, 62)( 57, 60)( 58, 61)( 65, 71)( 66, 69)( 67, 70)
( 74, 80)( 75, 78)( 76, 79)( 83, 89)( 84, 87)( 85, 88)( 92, 98)( 93, 96)
( 94, 97)(101,107)(102,105)(103,106);;
s1 := (  4,  9)(  5,  7)(  6,  8)( 10, 19)( 11, 20)( 12, 21)( 13, 27)( 14, 25)
( 15, 26)( 16, 23)( 17, 24)( 18, 22)( 31, 36)( 32, 34)( 33, 35)( 37, 46)
( 38, 47)( 39, 48)( 40, 54)( 41, 52)( 42, 53)( 43, 50)( 44, 51)( 45, 49)
( 58, 63)( 59, 61)( 60, 62)( 64, 73)( 65, 74)( 66, 75)( 67, 81)( 68, 79)
( 69, 80)( 70, 77)( 71, 78)( 72, 76)( 85, 90)( 86, 88)( 87, 89)( 91,100)
( 92,101)( 93,102)( 94,108)( 95,106)( 96,107)( 97,104)( 98,105)( 99,103);;
s2 := (  1, 14)(  2, 13)(  3, 15)(  4, 11)(  5, 10)(  6, 12)(  7, 17)(  8, 16)
(  9, 18)( 19, 23)( 20, 22)( 21, 24)( 25, 26)( 28, 41)( 29, 40)( 30, 42)
( 31, 38)( 32, 37)( 33, 39)( 34, 44)( 35, 43)( 36, 45)( 46, 50)( 47, 49)
( 48, 51)( 52, 53)( 55, 95)( 56, 94)( 57, 96)( 58, 92)( 59, 91)( 60, 93)
( 61, 98)( 62, 97)( 63, 99)( 64, 86)( 65, 85)( 66, 87)( 67, 83)( 68, 82)
( 69, 84)( 70, 89)( 71, 88)( 72, 90)( 73,104)( 74,103)( 75,105)( 76,101)
( 77,100)( 78,102)( 79,107)( 80,106)( 81,108);;
s3 := (  1, 55)(  2, 56)(  3, 57)(  4, 58)(  5, 59)(  6, 60)(  7, 61)(  8, 62)
(  9, 63)( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)( 16, 70)
( 17, 71)( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)
( 25, 79)( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)( 32, 86)
( 33, 87)( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)( 40, 94)
( 41, 95)( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)( 48,102)
( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(108)!(  2,  8)(  3,  6)(  4,  7)( 11, 17)( 12, 15)( 13, 16)( 20, 26)
( 21, 24)( 22, 25)( 29, 35)( 30, 33)( 31, 34)( 38, 44)( 39, 42)( 40, 43)
( 47, 53)( 48, 51)( 49, 52)( 56, 62)( 57, 60)( 58, 61)( 65, 71)( 66, 69)
( 67, 70)( 74, 80)( 75, 78)( 76, 79)( 83, 89)( 84, 87)( 85, 88)( 92, 98)
( 93, 96)( 94, 97)(101,107)(102,105)(103,106);
s1 := Sym(108)!(  4,  9)(  5,  7)(  6,  8)( 10, 19)( 11, 20)( 12, 21)( 13, 27)
( 14, 25)( 15, 26)( 16, 23)( 17, 24)( 18, 22)( 31, 36)( 32, 34)( 33, 35)
( 37, 46)( 38, 47)( 39, 48)( 40, 54)( 41, 52)( 42, 53)( 43, 50)( 44, 51)
( 45, 49)( 58, 63)( 59, 61)( 60, 62)( 64, 73)( 65, 74)( 66, 75)( 67, 81)
( 68, 79)( 69, 80)( 70, 77)( 71, 78)( 72, 76)( 85, 90)( 86, 88)( 87, 89)
( 91,100)( 92,101)( 93,102)( 94,108)( 95,106)( 96,107)( 97,104)( 98,105)
( 99,103);
s2 := Sym(108)!(  1, 14)(  2, 13)(  3, 15)(  4, 11)(  5, 10)(  6, 12)(  7, 17)
(  8, 16)(  9, 18)( 19, 23)( 20, 22)( 21, 24)( 25, 26)( 28, 41)( 29, 40)
( 30, 42)( 31, 38)( 32, 37)( 33, 39)( 34, 44)( 35, 43)( 36, 45)( 46, 50)
( 47, 49)( 48, 51)( 52, 53)( 55, 95)( 56, 94)( 57, 96)( 58, 92)( 59, 91)
( 60, 93)( 61, 98)( 62, 97)( 63, 99)( 64, 86)( 65, 85)( 66, 87)( 67, 83)
( 68, 82)( 69, 84)( 70, 89)( 71, 88)( 72, 90)( 73,104)( 74,103)( 75,105)
( 76,101)( 77,100)( 78,102)( 79,107)( 80,106)( 81,108);
s3 := Sym(108)!(  1, 55)(  2, 56)(  3, 57)(  4, 58)(  5, 59)(  6, 60)(  7, 61)
(  8, 62)(  9, 63)( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)
( 16, 70)( 17, 71)( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)
( 24, 78)( 25, 79)( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)
( 32, 86)( 33, 87)( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)
( 40, 94)( 41, 95)( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)
( 48,102)( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);
poly := sub<Sym(108)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1 >; 
 
References : None.
to this polytope