include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6}*432b
if this polytope has a name.
Group : SmallGroup(432,741)
Rank : 3
Schlafli Type : {4,6}
Number of vertices, edges, etc : 36, 108, 54
Order of s0s1s2 : 12
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Halving Operation
Facet Of :
{4,6,2} of size 864
{4,6,3} of size 1296
{4,6,4} of size 1728
{4,6,4} of size 1728
Vertex Figure Of :
{2,4,6} of size 864
{3,4,6} of size 1296
{4,4,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {4,6}*144
6-fold quotients : {4,6}*72
9-fold quotients : {4,6}*48a
18-fold quotients : {2,6}*24
27-fold quotients : {4,2}*16
36-fold quotients : {2,3}*12
54-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,12}*864c, {8,6}*864b
3-fold covers : {4,18}*1296b, {4,6}*1296a, {12,6}*1296j, {12,6}*1296k, {12,6}*1296s, {12,6}*1296t
4-fold covers : {4,24}*1728e, {4,24}*1728g, {16,6}*1728b, {8,12}*1728g, {8,12}*1728h, {4,12}*1728c, {4,6}*1728
Permutation Representation (GAP) :
s0 := (4,7)(5,8)(6,9);;
s1 := ( 1,10)( 2,12)( 3,11)( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17);;
s2 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,17)(11,16)(12,18)(13,14);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(18)!(4,7)(5,8)(6,9);
s1 := Sym(18)!( 1,10)( 2,12)( 3,11)( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17);
s2 := Sym(18)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,17)(11,16)(12,18)(13,14);
poly := sub<Sym(18)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1 >;
References : None.
to this polytope