include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,4,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,4,6}*1728a
Also Known As : {{6,6|2},{6,4|2},{4,6|2}}. if this polytope has another name.
Group : SmallGroup(1728,47341)
Rank : 5
Schlafli Type : {6,6,4,6}
Number of vertices, edges, etc : 6, 18, 12, 12, 6
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,6,2,6}*864a
3-fold quotients : {2,6,4,6}*576, {6,2,4,6}*576a, {6,6,4,2}*576a
4-fold quotients : {6,6,2,3}*432a
6-fold quotients : {3,2,4,6}*288a, {2,6,2,6}*288, {6,2,2,6}*288, {6,6,2,2}*288a
9-fold quotients : {2,2,4,6}*192a, {2,6,4,2}*192a, {6,2,4,2}*192
12-fold quotients : {2,3,2,6}*144, {2,6,2,3}*144, {3,2,2,6}*144, {6,2,2,3}*144
18-fold quotients : {3,2,4,2}*96, {2,2,2,6}*96, {2,6,2,2}*96, {6,2,2,2}*96
24-fold quotients : {2,3,2,3}*72, {3,2,2,3}*72
27-fold quotients : {2,2,4,2}*64
36-fold quotients : {2,2,2,3}*48, {2,3,2,2}*48, {3,2,2,2}*48
54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)( 69, 72)
( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)( 95, 98)
( 96, 99)(103,106)(104,107)(105,108);;
s1 := ( 1, 4)( 2, 5)( 3, 6)( 10, 22)( 11, 23)( 12, 24)( 13, 19)( 14, 20)
( 15, 21)( 16, 25)( 17, 26)( 18, 27)( 28, 31)( 29, 32)( 30, 33)( 37, 49)
( 38, 50)( 39, 51)( 40, 46)( 41, 47)( 42, 48)( 43, 52)( 44, 53)( 45, 54)
( 55, 58)( 56, 59)( 57, 60)( 64, 76)( 65, 77)( 66, 78)( 67, 73)( 68, 74)
( 69, 75)( 70, 79)( 71, 80)( 72, 81)( 82, 85)( 83, 86)( 84, 87)( 91,103)
( 92,104)( 93,105)( 94,100)( 95,101)( 96,102)( 97,106)( 98,107)( 99,108);;
s2 := ( 1, 10)( 2, 11)( 3, 12)( 4, 13)( 5, 14)( 6, 15)( 7, 16)( 8, 17)
( 9, 18)( 28, 37)( 29, 38)( 30, 39)( 31, 40)( 32, 41)( 33, 42)( 34, 43)
( 35, 44)( 36, 45)( 55, 91)( 56, 92)( 57, 93)( 58, 94)( 59, 95)( 60, 96)
( 61, 97)( 62, 98)( 63, 99)( 64, 82)( 65, 83)( 66, 84)( 67, 85)( 68, 86)
( 69, 87)( 70, 88)( 71, 89)( 72, 90)( 73,100)( 74,101)( 75,102)( 76,103)
( 77,104)( 78,105)( 79,106)( 80,107)( 81,108);;
s3 := ( 1, 55)( 2, 57)( 3, 56)( 4, 58)( 5, 60)( 6, 59)( 7, 61)( 8, 63)
( 9, 62)( 10, 64)( 11, 66)( 12, 65)( 13, 67)( 14, 69)( 15, 68)( 16, 70)
( 17, 72)( 18, 71)( 19, 73)( 20, 75)( 21, 74)( 22, 76)( 23, 78)( 24, 77)
( 25, 79)( 26, 81)( 27, 80)( 28, 82)( 29, 84)( 30, 83)( 31, 85)( 32, 87)
( 33, 86)( 34, 88)( 35, 90)( 36, 89)( 37, 91)( 38, 93)( 39, 92)( 40, 94)
( 41, 96)( 42, 95)( 43, 97)( 44, 99)( 45, 98)( 46,100)( 47,102)( 48,101)
( 49,103)( 50,105)( 51,104)( 52,106)( 53,108)( 54,107);;
s4 := ( 1, 2)( 4, 5)( 7, 8)( 10, 11)( 13, 14)( 16, 17)( 19, 20)( 22, 23)
( 25, 26)( 28, 29)( 31, 32)( 34, 35)( 37, 38)( 40, 41)( 43, 44)( 46, 47)
( 49, 50)( 52, 53)( 55, 56)( 58, 59)( 61, 62)( 64, 65)( 67, 68)( 70, 71)
( 73, 74)( 76, 77)( 79, 80)( 82, 83)( 85, 86)( 88, 89)( 91, 92)( 94, 95)
( 97, 98)(100,101)(103,104)(106,107);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(108)!( 4, 7)( 5, 8)( 6, 9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)
( 69, 72)( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)
( 95, 98)( 96, 99)(103,106)(104,107)(105,108);
s1 := Sym(108)!( 1, 4)( 2, 5)( 3, 6)( 10, 22)( 11, 23)( 12, 24)( 13, 19)
( 14, 20)( 15, 21)( 16, 25)( 17, 26)( 18, 27)( 28, 31)( 29, 32)( 30, 33)
( 37, 49)( 38, 50)( 39, 51)( 40, 46)( 41, 47)( 42, 48)( 43, 52)( 44, 53)
( 45, 54)( 55, 58)( 56, 59)( 57, 60)( 64, 76)( 65, 77)( 66, 78)( 67, 73)
( 68, 74)( 69, 75)( 70, 79)( 71, 80)( 72, 81)( 82, 85)( 83, 86)( 84, 87)
( 91,103)( 92,104)( 93,105)( 94,100)( 95,101)( 96,102)( 97,106)( 98,107)
( 99,108);
s2 := Sym(108)!( 1, 10)( 2, 11)( 3, 12)( 4, 13)( 5, 14)( 6, 15)( 7, 16)
( 8, 17)( 9, 18)( 28, 37)( 29, 38)( 30, 39)( 31, 40)( 32, 41)( 33, 42)
( 34, 43)( 35, 44)( 36, 45)( 55, 91)( 56, 92)( 57, 93)( 58, 94)( 59, 95)
( 60, 96)( 61, 97)( 62, 98)( 63, 99)( 64, 82)( 65, 83)( 66, 84)( 67, 85)
( 68, 86)( 69, 87)( 70, 88)( 71, 89)( 72, 90)( 73,100)( 74,101)( 75,102)
( 76,103)( 77,104)( 78,105)( 79,106)( 80,107)( 81,108);
s3 := Sym(108)!( 1, 55)( 2, 57)( 3, 56)( 4, 58)( 5, 60)( 6, 59)( 7, 61)
( 8, 63)( 9, 62)( 10, 64)( 11, 66)( 12, 65)( 13, 67)( 14, 69)( 15, 68)
( 16, 70)( 17, 72)( 18, 71)( 19, 73)( 20, 75)( 21, 74)( 22, 76)( 23, 78)
( 24, 77)( 25, 79)( 26, 81)( 27, 80)( 28, 82)( 29, 84)( 30, 83)( 31, 85)
( 32, 87)( 33, 86)( 34, 88)( 35, 90)( 36, 89)( 37, 91)( 38, 93)( 39, 92)
( 40, 94)( 41, 96)( 42, 95)( 43, 97)( 44, 99)( 45, 98)( 46,100)( 47,102)
( 48,101)( 49,103)( 50,105)( 51,104)( 52,106)( 53,108)( 54,107);
s4 := Sym(108)!( 1, 2)( 4, 5)( 7, 8)( 10, 11)( 13, 14)( 16, 17)( 19, 20)
( 22, 23)( 25, 26)( 28, 29)( 31, 32)( 34, 35)( 37, 38)( 40, 41)( 43, 44)
( 46, 47)( 49, 50)( 52, 53)( 55, 56)( 58, 59)( 61, 62)( 64, 65)( 67, 68)
( 70, 71)( 73, 74)( 76, 77)( 79, 80)( 82, 83)( 85, 86)( 88, 89)( 91, 92)
( 94, 95)( 97, 98)(100,101)(103,104)(106,107);
poly := sub<Sym(108)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
References : None.
to this polytope