include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,2,4,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,4,6}*576a
if this polytope has a name.
Group : SmallGroup(576,8553)
Rank : 5
Schlafli Type : {6,2,4,6}
Number of vertices, edges, etc : 6, 6, 4, 12, 6
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,2,4,6,2} of size 1152
{6,2,4,6,3} of size 1728
Vertex Figure Of :
{2,6,2,4,6} of size 1152
{3,6,2,4,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,4,6}*288a, {6,2,2,6}*288
3-fold quotients : {2,2,4,6}*192a, {6,2,4,2}*192
4-fold quotients : {3,2,2,6}*144, {6,2,2,3}*144
6-fold quotients : {3,2,4,2}*96, {2,2,2,6}*96, {6,2,2,2}*96
8-fold quotients : {3,2,2,3}*72
9-fold quotients : {2,2,4,2}*64
12-fold quotients : {2,2,2,3}*48, {3,2,2,2}*48
18-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {6,4,4,6}*1152, {6,2,4,12}*1152a, {12,2,4,6}*1152a, {6,2,8,6}*1152
3-fold covers : {6,2,4,18}*1728a, {18,2,4,6}*1728a, {6,2,12,6}*1728a, {6,6,4,6}*1728a, {6,6,4,6}*1728c, {6,2,12,6}*1728c
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 8,11)(12,15)(13,16);;
s3 := ( 7, 8)( 9,13)(10,12)(11,14)(15,18)(16,17);;
s4 := ( 7, 9)( 8,12)(11,15)(14,17);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(18)!(3,4)(5,6);
s1 := Sym(18)!(1,5)(2,3)(4,6);
s2 := Sym(18)!( 8,11)(12,15)(13,16);
s3 := Sym(18)!( 7, 8)( 9,13)(10,12)(11,14)(15,18)(16,17);
s4 := Sym(18)!( 7, 9)( 8,12)(11,15)(14,17);
poly := sub<Sym(18)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope