include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,4,6,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,4,6,3}*1728
if this polytope has a name.
Group : SmallGroup(1728,47409)
Rank : 6
Schlafli Type : {2,6,4,6,3}
Number of vertices, edges, etc : 2, 6, 12, 12, 9, 3
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,2,6,3}*864
3-fold quotients : {2,6,4,2,3}*576a, {2,2,4,6,3}*576
4-fold quotients : {2,3,2,6,3}*432
6-fold quotients : {2,2,2,6,3}*288, {2,6,2,2,3}*288
9-fold quotients : {2,2,4,2,3}*192
12-fold quotients : {2,3,2,2,3}*144
18-fold quotients : {2,2,2,2,3}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7, 8)( 10, 11)( 13, 14)( 16, 17)( 19, 20)( 22, 23)( 25, 26)
( 28, 29)( 31, 32)( 34, 35)( 37, 38)( 40, 41)( 43, 44)( 46, 47)( 49, 50)
( 52, 53)( 55, 56)( 58, 59)( 61, 62)( 64, 65)( 67, 68)( 70, 71)( 73, 74)
( 76, 77)( 79, 80)( 82, 83)( 85, 86)( 88, 89)( 91, 92)( 94, 95)( 97, 98)
(100,101)(103,104)(106,107)(109,110);;
s2 := ( 3, 58)( 4, 57)( 5, 59)( 6, 61)( 7, 60)( 8, 62)( 9, 64)( 10, 63)
( 11, 65)( 12, 67)( 13, 66)( 14, 68)( 15, 70)( 16, 69)( 17, 71)( 18, 73)
( 19, 72)( 20, 74)( 21, 76)( 22, 75)( 23, 77)( 24, 79)( 25, 78)( 26, 80)
( 27, 82)( 28, 81)( 29, 83)( 30, 85)( 31, 84)( 32, 86)( 33, 88)( 34, 87)
( 35, 89)( 36, 91)( 37, 90)( 38, 92)( 39, 94)( 40, 93)( 41, 95)( 42, 97)
( 43, 96)( 44, 98)( 45,100)( 46, 99)( 47,101)( 48,103)( 49,102)( 50,104)
( 51,106)( 52,105)( 53,107)( 54,109)( 55,108)( 56,110);;
s3 := ( 6, 9)( 7, 10)( 8, 11)( 15, 18)( 16, 19)( 17, 20)( 24, 27)( 25, 28)
( 26, 29)( 33, 36)( 34, 37)( 35, 38)( 42, 45)( 43, 46)( 44, 47)( 51, 54)
( 52, 55)( 53, 56)( 57, 84)( 58, 85)( 59, 86)( 60, 90)( 61, 91)( 62, 92)
( 63, 87)( 64, 88)( 65, 89)( 66, 93)( 67, 94)( 68, 95)( 69, 99)( 70,100)
( 71,101)( 72, 96)( 73, 97)( 74, 98)( 75,102)( 76,103)( 77,104)( 78,108)
( 79,109)( 80,110)( 81,105)( 82,106)( 83,107);;
s4 := ( 3, 6)( 4, 7)( 5, 8)( 12, 24)( 13, 25)( 14, 26)( 15, 21)( 16, 22)
( 17, 23)( 18, 27)( 19, 28)( 20, 29)( 30, 33)( 31, 34)( 32, 35)( 39, 51)
( 40, 52)( 41, 53)( 42, 48)( 43, 49)( 44, 50)( 45, 54)( 46, 55)( 47, 56)
( 57, 60)( 58, 61)( 59, 62)( 66, 78)( 67, 79)( 68, 80)( 69, 75)( 70, 76)
( 71, 77)( 72, 81)( 73, 82)( 74, 83)( 84, 87)( 85, 88)( 86, 89)( 93,105)
( 94,106)( 95,107)( 96,102)( 97,103)( 98,104)( 99,108)(100,109)(101,110);;
s5 := ( 3, 12)( 4, 13)( 5, 14)( 6, 18)( 7, 19)( 8, 20)( 9, 15)( 10, 16)
( 11, 17)( 24, 27)( 25, 28)( 26, 29)( 30, 39)( 31, 40)( 32, 41)( 33, 45)
( 34, 46)( 35, 47)( 36, 42)( 37, 43)( 38, 44)( 51, 54)( 52, 55)( 53, 56)
( 57, 66)( 58, 67)( 59, 68)( 60, 72)( 61, 73)( 62, 74)( 63, 69)( 64, 70)
( 65, 71)( 78, 81)( 79, 82)( 80, 83)( 84, 93)( 85, 94)( 86, 95)( 87, 99)
( 88,100)( 89,101)( 90, 96)( 91, 97)( 92, 98)(105,108)(106,109)(107,110);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5*s4*s5,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s5*s3*s4*s3*s4*s5*s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(110)!(1,2);
s1 := Sym(110)!( 4, 5)( 7, 8)( 10, 11)( 13, 14)( 16, 17)( 19, 20)( 22, 23)
( 25, 26)( 28, 29)( 31, 32)( 34, 35)( 37, 38)( 40, 41)( 43, 44)( 46, 47)
( 49, 50)( 52, 53)( 55, 56)( 58, 59)( 61, 62)( 64, 65)( 67, 68)( 70, 71)
( 73, 74)( 76, 77)( 79, 80)( 82, 83)( 85, 86)( 88, 89)( 91, 92)( 94, 95)
( 97, 98)(100,101)(103,104)(106,107)(109,110);
s2 := Sym(110)!( 3, 58)( 4, 57)( 5, 59)( 6, 61)( 7, 60)( 8, 62)( 9, 64)
( 10, 63)( 11, 65)( 12, 67)( 13, 66)( 14, 68)( 15, 70)( 16, 69)( 17, 71)
( 18, 73)( 19, 72)( 20, 74)( 21, 76)( 22, 75)( 23, 77)( 24, 79)( 25, 78)
( 26, 80)( 27, 82)( 28, 81)( 29, 83)( 30, 85)( 31, 84)( 32, 86)( 33, 88)
( 34, 87)( 35, 89)( 36, 91)( 37, 90)( 38, 92)( 39, 94)( 40, 93)( 41, 95)
( 42, 97)( 43, 96)( 44, 98)( 45,100)( 46, 99)( 47,101)( 48,103)( 49,102)
( 50,104)( 51,106)( 52,105)( 53,107)( 54,109)( 55,108)( 56,110);
s3 := Sym(110)!( 6, 9)( 7, 10)( 8, 11)( 15, 18)( 16, 19)( 17, 20)( 24, 27)
( 25, 28)( 26, 29)( 33, 36)( 34, 37)( 35, 38)( 42, 45)( 43, 46)( 44, 47)
( 51, 54)( 52, 55)( 53, 56)( 57, 84)( 58, 85)( 59, 86)( 60, 90)( 61, 91)
( 62, 92)( 63, 87)( 64, 88)( 65, 89)( 66, 93)( 67, 94)( 68, 95)( 69, 99)
( 70,100)( 71,101)( 72, 96)( 73, 97)( 74, 98)( 75,102)( 76,103)( 77,104)
( 78,108)( 79,109)( 80,110)( 81,105)( 82,106)( 83,107);
s4 := Sym(110)!( 3, 6)( 4, 7)( 5, 8)( 12, 24)( 13, 25)( 14, 26)( 15, 21)
( 16, 22)( 17, 23)( 18, 27)( 19, 28)( 20, 29)( 30, 33)( 31, 34)( 32, 35)
( 39, 51)( 40, 52)( 41, 53)( 42, 48)( 43, 49)( 44, 50)( 45, 54)( 46, 55)
( 47, 56)( 57, 60)( 58, 61)( 59, 62)( 66, 78)( 67, 79)( 68, 80)( 69, 75)
( 70, 76)( 71, 77)( 72, 81)( 73, 82)( 74, 83)( 84, 87)( 85, 88)( 86, 89)
( 93,105)( 94,106)( 95,107)( 96,102)( 97,103)( 98,104)( 99,108)(100,109)
(101,110);
s5 := Sym(110)!( 3, 12)( 4, 13)( 5, 14)( 6, 18)( 7, 19)( 8, 20)( 9, 15)
( 10, 16)( 11, 17)( 24, 27)( 25, 28)( 26, 29)( 30, 39)( 31, 40)( 32, 41)
( 33, 45)( 34, 46)( 35, 47)( 36, 42)( 37, 43)( 38, 44)( 51, 54)( 52, 55)
( 53, 56)( 57, 66)( 58, 67)( 59, 68)( 60, 72)( 61, 73)( 62, 74)( 63, 69)
( 64, 70)( 65, 71)( 78, 81)( 79, 82)( 80, 83)( 84, 93)( 85, 94)( 86, 95)
( 87, 99)( 88,100)( 89,101)( 90, 96)( 91, 97)( 92, 98)(105,108)(106,109)
(107,110);
poly := sub<Sym(110)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5*s4*s5, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3,
s5*s3*s4*s3*s4*s5*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope