Polytope of Type {4,12,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,12,4}*1728f
if this polytope has a name.
Group : SmallGroup(1728,47847)
Rank : 4
Schlafli Type : {4,12,4}
Number of vertices, edges, etc : 4, 108, 108, 18
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   18-fold quotients : {4,6,2}*96c
   36-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)
(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36);;
s1 := ( 3, 4)( 5,29)( 6,30)( 7,32)( 8,31)( 9,21)(10,22)(11,24)(12,23)(13,25)
(14,26)(15,28)(16,27)(19,20)(35,36);;
s2 := ( 2, 4)( 6, 8)(10,12)(13,33)(14,36)(15,35)(16,34)(17,25)(18,28)(19,27)
(20,26)(21,29)(22,32)(23,31)(24,30);;
s3 := ( 1,17)( 2,18)( 3,19)( 4,20)( 5,25)( 6,26)( 7,27)( 8,28)(13,29)(14,30)
(15,31)(16,32);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(36)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)
(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36);
s1 := Sym(36)!( 3, 4)( 5,29)( 6,30)( 7,32)( 8,31)( 9,21)(10,22)(11,24)(12,23)
(13,25)(14,26)(15,28)(16,27)(19,20)(35,36);
s2 := Sym(36)!( 2, 4)( 6, 8)(10,12)(13,33)(14,36)(15,35)(16,34)(17,25)(18,28)
(19,27)(20,26)(21,29)(22,32)(23,31)(24,30);
s3 := Sym(36)!( 1,17)( 2,18)( 3,19)( 4,20)( 5,25)( 6,26)( 7,27)( 8,28)(13,29)
(14,30)(15,31)(16,32);
poly := sub<Sym(36)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 >; 
 
References : None.
to this polytope