include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,4}*432b
if this polytope has a name.
Group : SmallGroup(432,741)
Rank : 3
Schlafli Type : {12,4}
Number of vertices, edges, etc : 54, 108, 18
Order of s0s1s2 : 6
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
{12,4,2} of size 864
{12,4,4} of size 1728
Vertex Figure Of :
{2,12,4} of size 864
{4,12,4} of size 1728
{4,12,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {4,4}*144
6-fold quotients : {4,4}*72
18-fold quotients : {6,2}*24
36-fold quotients : {3,2}*12
54-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,4}*864c
3-fold covers : {36,4}*1296, {12,4}*1296, {12,12}*1296c, {12,12}*1296d, {12,12}*1296f, {12,12}*1296h
4-fold covers : {24,4}*1728e, {12,8}*1728e, {24,4}*1728h, {12,8}*1728f, {12,4}*1728d, {12,4}*1728e
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(14,15)(17,18);;
s1 := ( 1,11)( 2,10)( 3,12)( 4,14)( 5,13)( 6,15)( 7,17)( 8,16)( 9,18);;
s2 := (10,16)(11,17)(12,18);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(18)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(14,15)(17,18);
s1 := Sym(18)!( 1,11)( 2,10)( 3,12)( 4,14)( 5,13)( 6,15)( 7,17)( 8,16)( 9,18);
s2 := Sym(18)!(10,16)(11,17)(12,18);
poly := sub<Sym(18)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >;
References : None.
to this polytope