include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,12,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,6}*1728g
if this polytope has a name.
Group : SmallGroup(1728,47874)
Rank : 4
Schlafli Type : {6,12,6}
Number of vertices, edges, etc : 6, 72, 72, 12
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,12,6}*864h
3-fold quotients : {2,12,6}*576a
4-fold quotients : {6,6,6}*432d
6-fold quotients : {2,12,6}*288d
9-fold quotients : {2,4,6}*192
12-fold quotients : {2,6,6}*144a, {6,6,2}*144b
18-fold quotients : {2,4,3}*96, {2,4,6}*96b, {2,4,6}*96c
24-fold quotients : {6,3,2}*72
36-fold quotients : {2,4,3}*48, {2,2,6}*48, {2,6,2}*48
72-fold quotients : {2,2,3}*24, {2,3,2}*24
108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)( 20, 32)
( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)( 52, 64)
( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)( 60, 72)
( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)( 92,104)
( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)(124,136)
(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)(132,144)
(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)(164,176)
(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)(196,208)
(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)(204,216);;
s1 := ( 1, 15)( 2, 16)( 3, 13)( 4, 14)( 5, 23)( 6, 24)( 7, 21)( 8, 22)
( 9, 19)( 10, 20)( 11, 17)( 12, 18)( 25, 27)( 26, 28)( 29, 35)( 30, 36)
( 31, 33)( 32, 34)( 37, 51)( 38, 52)( 39, 49)( 40, 50)( 41, 59)( 42, 60)
( 43, 57)( 44, 58)( 45, 55)( 46, 56)( 47, 53)( 48, 54)( 61, 63)( 62, 64)
( 65, 71)( 66, 72)( 67, 69)( 68, 70)( 73, 87)( 74, 88)( 75, 85)( 76, 86)
( 77, 95)( 78, 96)( 79, 93)( 80, 94)( 81, 91)( 82, 92)( 83, 89)( 84, 90)
( 97, 99)( 98,100)(101,107)(102,108)(103,105)(104,106)(109,123)(110,124)
(111,121)(112,122)(113,131)(114,132)(115,129)(116,130)(117,127)(118,128)
(119,125)(120,126)(133,135)(134,136)(137,143)(138,144)(139,141)(140,142)
(145,159)(146,160)(147,157)(148,158)(149,167)(150,168)(151,165)(152,166)
(153,163)(154,164)(155,161)(156,162)(169,171)(170,172)(173,179)(174,180)
(175,177)(176,178)(181,195)(182,196)(183,193)(184,194)(185,203)(186,204)
(187,201)(188,202)(189,199)(190,200)(191,197)(192,198)(205,207)(206,208)
(209,215)(210,216)(211,213)(212,214);;
s2 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 11, 12)( 13, 29)( 14, 30)( 15, 32)
( 16, 31)( 17, 25)( 18, 26)( 19, 28)( 20, 27)( 21, 33)( 22, 34)( 23, 36)
( 24, 35)( 37, 77)( 38, 78)( 39, 80)( 40, 79)( 41, 73)( 42, 74)( 43, 76)
( 44, 75)( 45, 81)( 46, 82)( 47, 84)( 48, 83)( 49,101)( 50,102)( 51,104)
( 52,103)( 53, 97)( 54, 98)( 55,100)( 56, 99)( 57,105)( 58,106)( 59,108)
( 60,107)( 61, 89)( 62, 90)( 63, 92)( 64, 91)( 65, 85)( 66, 86)( 67, 88)
( 68, 87)( 69, 93)( 70, 94)( 71, 96)( 72, 95)(109,113)(110,114)(111,116)
(112,115)(119,120)(121,137)(122,138)(123,140)(124,139)(125,133)(126,134)
(127,136)(128,135)(129,141)(130,142)(131,144)(132,143)(145,185)(146,186)
(147,188)(148,187)(149,181)(150,182)(151,184)(152,183)(153,189)(154,190)
(155,192)(156,191)(157,209)(158,210)(159,212)(160,211)(161,205)(162,206)
(163,208)(164,207)(165,213)(166,214)(167,216)(168,215)(169,197)(170,198)
(171,200)(172,199)(173,193)(174,194)(175,196)(176,195)(177,201)(178,202)
(179,204)(180,203);;
s3 := ( 1,145)( 2,148)( 3,147)( 4,146)( 5,149)( 6,152)( 7,151)( 8,150)
( 9,153)( 10,156)( 11,155)( 12,154)( 13,157)( 14,160)( 15,159)( 16,158)
( 17,161)( 18,164)( 19,163)( 20,162)( 21,165)( 22,168)( 23,167)( 24,166)
( 25,169)( 26,172)( 27,171)( 28,170)( 29,173)( 30,176)( 31,175)( 32,174)
( 33,177)( 34,180)( 35,179)( 36,178)( 37,109)( 38,112)( 39,111)( 40,110)
( 41,113)( 42,116)( 43,115)( 44,114)( 45,117)( 46,120)( 47,119)( 48,118)
( 49,121)( 50,124)( 51,123)( 52,122)( 53,125)( 54,128)( 55,127)( 56,126)
( 57,129)( 58,132)( 59,131)( 60,130)( 61,133)( 62,136)( 63,135)( 64,134)
( 65,137)( 66,140)( 67,139)( 68,138)( 69,141)( 70,144)( 71,143)( 72,142)
( 73,181)( 74,184)( 75,183)( 76,182)( 77,185)( 78,188)( 79,187)( 80,186)
( 81,189)( 82,192)( 83,191)( 84,190)( 85,193)( 86,196)( 87,195)( 88,194)
( 89,197)( 90,200)( 91,199)( 92,198)( 93,201)( 94,204)( 95,203)( 96,202)
( 97,205)( 98,208)( 99,207)(100,206)(101,209)(102,212)(103,211)(104,210)
(105,213)(106,216)(107,215)(108,214);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(216)!( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)
( 20, 32)( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)
( 52, 64)( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)
( 60, 72)( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)
( 92,104)( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)
(124,136)(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)
(132,144)(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)
(164,176)(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)
(196,208)(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)
(204,216);
s1 := Sym(216)!( 1, 15)( 2, 16)( 3, 13)( 4, 14)( 5, 23)( 6, 24)( 7, 21)
( 8, 22)( 9, 19)( 10, 20)( 11, 17)( 12, 18)( 25, 27)( 26, 28)( 29, 35)
( 30, 36)( 31, 33)( 32, 34)( 37, 51)( 38, 52)( 39, 49)( 40, 50)( 41, 59)
( 42, 60)( 43, 57)( 44, 58)( 45, 55)( 46, 56)( 47, 53)( 48, 54)( 61, 63)
( 62, 64)( 65, 71)( 66, 72)( 67, 69)( 68, 70)( 73, 87)( 74, 88)( 75, 85)
( 76, 86)( 77, 95)( 78, 96)( 79, 93)( 80, 94)( 81, 91)( 82, 92)( 83, 89)
( 84, 90)( 97, 99)( 98,100)(101,107)(102,108)(103,105)(104,106)(109,123)
(110,124)(111,121)(112,122)(113,131)(114,132)(115,129)(116,130)(117,127)
(118,128)(119,125)(120,126)(133,135)(134,136)(137,143)(138,144)(139,141)
(140,142)(145,159)(146,160)(147,157)(148,158)(149,167)(150,168)(151,165)
(152,166)(153,163)(154,164)(155,161)(156,162)(169,171)(170,172)(173,179)
(174,180)(175,177)(176,178)(181,195)(182,196)(183,193)(184,194)(185,203)
(186,204)(187,201)(188,202)(189,199)(190,200)(191,197)(192,198)(205,207)
(206,208)(209,215)(210,216)(211,213)(212,214);
s2 := Sym(216)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 11, 12)( 13, 29)( 14, 30)
( 15, 32)( 16, 31)( 17, 25)( 18, 26)( 19, 28)( 20, 27)( 21, 33)( 22, 34)
( 23, 36)( 24, 35)( 37, 77)( 38, 78)( 39, 80)( 40, 79)( 41, 73)( 42, 74)
( 43, 76)( 44, 75)( 45, 81)( 46, 82)( 47, 84)( 48, 83)( 49,101)( 50,102)
( 51,104)( 52,103)( 53, 97)( 54, 98)( 55,100)( 56, 99)( 57,105)( 58,106)
( 59,108)( 60,107)( 61, 89)( 62, 90)( 63, 92)( 64, 91)( 65, 85)( 66, 86)
( 67, 88)( 68, 87)( 69, 93)( 70, 94)( 71, 96)( 72, 95)(109,113)(110,114)
(111,116)(112,115)(119,120)(121,137)(122,138)(123,140)(124,139)(125,133)
(126,134)(127,136)(128,135)(129,141)(130,142)(131,144)(132,143)(145,185)
(146,186)(147,188)(148,187)(149,181)(150,182)(151,184)(152,183)(153,189)
(154,190)(155,192)(156,191)(157,209)(158,210)(159,212)(160,211)(161,205)
(162,206)(163,208)(164,207)(165,213)(166,214)(167,216)(168,215)(169,197)
(170,198)(171,200)(172,199)(173,193)(174,194)(175,196)(176,195)(177,201)
(178,202)(179,204)(180,203);
s3 := Sym(216)!( 1,145)( 2,148)( 3,147)( 4,146)( 5,149)( 6,152)( 7,151)
( 8,150)( 9,153)( 10,156)( 11,155)( 12,154)( 13,157)( 14,160)( 15,159)
( 16,158)( 17,161)( 18,164)( 19,163)( 20,162)( 21,165)( 22,168)( 23,167)
( 24,166)( 25,169)( 26,172)( 27,171)( 28,170)( 29,173)( 30,176)( 31,175)
( 32,174)( 33,177)( 34,180)( 35,179)( 36,178)( 37,109)( 38,112)( 39,111)
( 40,110)( 41,113)( 42,116)( 43,115)( 44,114)( 45,117)( 46,120)( 47,119)
( 48,118)( 49,121)( 50,124)( 51,123)( 52,122)( 53,125)( 54,128)( 55,127)
( 56,126)( 57,129)( 58,132)( 59,131)( 60,130)( 61,133)( 62,136)( 63,135)
( 64,134)( 65,137)( 66,140)( 67,139)( 68,138)( 69,141)( 70,144)( 71,143)
( 72,142)( 73,181)( 74,184)( 75,183)( 76,182)( 77,185)( 78,188)( 79,187)
( 80,186)( 81,189)( 82,192)( 83,191)( 84,190)( 85,193)( 86,196)( 87,195)
( 88,194)( 89,197)( 90,200)( 91,199)( 92,198)( 93,201)( 94,204)( 95,203)
( 96,202)( 97,205)( 98,208)( 99,207)(100,206)(101,209)(102,212)(103,211)
(104,210)(105,213)(106,216)(107,215)(108,214);
poly := sub<Sym(216)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2 >;
References : None.
to this polytope