include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,6,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6,6,2}*1728e
if this polytope has a name.
Group : SmallGroup(1728,47915)
Rank : 6
Schlafli Type : {2,6,6,6,2}
Number of vertices, edges, etc : 2, 6, 18, 18, 6, 2
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,2,6,6,2}*576c, {2,6,6,2,2}*576a
6-fold quotients : {2,2,3,6,2}*288
9-fold quotients : {2,2,6,2,2}*192, {2,6,2,2,2}*192
18-fold quotients : {2,2,3,2,2}*96, {2,3,2,2,2}*96
27-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,26)(28,29)(31,32)
(34,35)(37,38)(40,41)(43,44)(46,47)(49,50)(52,53)(55,56);;
s2 := ( 3, 4)( 6,10)( 7, 9)( 8,11)(12,22)(13,21)(14,23)(15,28)(16,27)(17,29)
(18,25)(19,24)(20,26)(30,31)(33,37)(34,36)(35,38)(39,49)(40,48)(41,50)(42,55)
(43,54)(44,56)(45,52)(46,51)(47,53);;
s3 := ( 3,42)( 4,43)( 5,44)( 6,39)( 7,40)( 8,41)( 9,45)(10,46)(11,47)(12,33)
(13,34)(14,35)(15,30)(16,31)(17,32)(18,36)(19,37)(20,38)(21,51)(22,52)(23,53)
(24,48)(25,49)(26,50)(27,54)(28,55)(29,56);;
s4 := ( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(24,27)(25,28)(26,29)(33,36)
(34,37)(35,38)(42,45)(43,46)(44,47)(51,54)(52,55)(53,56);;
s5 := (57,58);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s1*s2*s3*s2*s1*s2*s3*s2, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(58)!(1,2);
s1 := Sym(58)!( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,26)(28,29)
(31,32)(34,35)(37,38)(40,41)(43,44)(46,47)(49,50)(52,53)(55,56);
s2 := Sym(58)!( 3, 4)( 6,10)( 7, 9)( 8,11)(12,22)(13,21)(14,23)(15,28)(16,27)
(17,29)(18,25)(19,24)(20,26)(30,31)(33,37)(34,36)(35,38)(39,49)(40,48)(41,50)
(42,55)(43,54)(44,56)(45,52)(46,51)(47,53);
s3 := Sym(58)!( 3,42)( 4,43)( 5,44)( 6,39)( 7,40)( 8,41)( 9,45)(10,46)(11,47)
(12,33)(13,34)(14,35)(15,30)(16,31)(17,32)(18,36)(19,37)(20,38)(21,51)(22,52)
(23,53)(24,48)(25,49)(26,50)(27,54)(28,55)(29,56);
s4 := Sym(58)!( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(24,27)(25,28)(26,29)
(33,36)(34,37)(35,38)(42,45)(43,46)(44,47)(51,54)(52,55)(53,56);
s5 := Sym(58)!(57,58);
poly := sub<Sym(58)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s1*s2*s3*s2*s1*s2*s3*s2,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3 >;
to this polytope