Polytope of Type {6,6,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,6,2}*864e
if this polytope has a name.
Group : SmallGroup(864,4704)
Rank : 5
Schlafli Type : {6,6,6,2}
Number of vertices, edges, etc : 6, 18, 18, 6, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,6,6,2,2} of size 1728
Vertex Figure Of :
   {2,6,6,6,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,6,6,2}*288c, {6,6,2,2}*288a
   6-fold quotients : {2,3,6,2}*144
   9-fold quotients : {2,6,2,2}*96, {6,2,2,2}*96
   18-fold quotients : {2,3,2,2}*48, {3,2,2,2}*48
   27-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,12,6,2}*1728d, {12,6,6,2}*1728c, {6,6,6,4}*1728g, {6,6,12,2}*1728f
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54);;
s1 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,20)(11,19)(12,21)(13,26)(14,25)(15,27)
(16,23)(17,22)(18,24)(28,29)(31,35)(32,34)(33,36)(37,47)(38,46)(39,48)(40,53)
(41,52)(42,54)(43,50)(44,49)(45,51);;
s2 := ( 1,40)( 2,41)( 3,42)( 4,37)( 5,38)( 6,39)( 7,43)( 8,44)( 9,45)(10,31)
(11,32)(12,33)(13,28)(14,29)(15,30)(16,34)(17,35)(18,36)(19,49)(20,50)(21,51)
(22,46)(23,47)(24,48)(25,52)(26,53)(27,54);;
s3 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)(31,34)
(32,35)(33,36)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54);;
s4 := (55,56);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(56)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54);
s1 := Sym(56)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,20)(11,19)(12,21)(13,26)(14,25)
(15,27)(16,23)(17,22)(18,24)(28,29)(31,35)(32,34)(33,36)(37,47)(38,46)(39,48)
(40,53)(41,52)(42,54)(43,50)(44,49)(45,51);
s2 := Sym(56)!( 1,40)( 2,41)( 3,42)( 4,37)( 5,38)( 6,39)( 7,43)( 8,44)( 9,45)
(10,31)(11,32)(12,33)(13,28)(14,29)(15,30)(16,34)(17,35)(18,36)(19,49)(20,50)
(21,51)(22,46)(23,47)(24,48)(25,52)(26,53)(27,54);
s3 := Sym(56)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)
(31,34)(32,35)(33,36)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54);
s4 := Sym(56)!(55,56);
poly := sub<Sym(56)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2 >; 
 

to this polytope