include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,6,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,6,6,2}*1728d
if this polytope has a name.
Group : SmallGroup(1728,47915)
Rank : 6
Schlafli Type : {2,2,6,6,2}
Number of vertices, edges, etc : 2, 2, 18, 54, 18, 2
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,2,6,6,2}*576a, {2,2,6,6,2}*576b, {2,2,6,6,2}*576c
6-fold quotients : {2,2,3,6,2}*288, {2,2,6,3,2}*288
9-fold quotients : {2,2,2,6,2}*192, {2,2,6,2,2}*192
18-fold quotients : {2,2,2,3,2}*96, {2,2,3,2,2}*96
27-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 8,11)( 9,12)(10,13)(14,23)(15,24)(16,25)(17,29)(18,30)(19,31)(20,26)
(21,27)(22,28);;
s3 := ( 5,17)( 6,19)( 7,18)( 8,14)( 9,16)(10,15)(11,20)(12,22)(13,21)(23,26)
(24,28)(25,27)(30,31);;
s4 := ( 5, 6)( 8, 9)(11,12)(14,24)(15,23)(16,25)(17,27)(18,26)(19,28)(20,30)
(21,29)(22,31);;
s5 := (32,33);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s4*s3*s2*s3*s4*s2*s3*s4*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(33)!(1,2);
s1 := Sym(33)!(3,4);
s2 := Sym(33)!( 8,11)( 9,12)(10,13)(14,23)(15,24)(16,25)(17,29)(18,30)(19,31)
(20,26)(21,27)(22,28);
s3 := Sym(33)!( 5,17)( 6,19)( 7,18)( 8,14)( 9,16)(10,15)(11,20)(12,22)(13,21)
(23,26)(24,28)(25,27)(30,31);
s4 := Sym(33)!( 5, 6)( 8, 9)(11,12)(14,24)(15,23)(16,25)(17,27)(18,26)(19,28)
(20,30)(21,29)(22,31);
s5 := Sym(33)!(32,33);
poly := sub<Sym(33)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s4*s3*s2*s3*s4*s2*s3*s4*s3*s2*s3 >;
to this polytope