Polytope of Type {2,6,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6,2}*864d
if this polytope has a name.
Group : SmallGroup(864,4704)
Rank : 5
Schlafli Type : {2,6,6,2}
Number of vertices, edges, etc : 2, 18, 54, 18, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,6,6,2,2} of size 1728
Vertex Figure Of :
   {2,2,6,6,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,6,6,2}*288a, {2,6,6,2}*288b, {2,6,6,2}*288c
   6-fold quotients : {2,3,6,2}*144, {2,6,3,2}*144
   9-fold quotients : {2,2,6,2}*96, {2,6,2,2}*96
   18-fold quotients : {2,2,3,2}*48, {2,3,2,2}*48
   27-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,6,12,2}*1728g, {2,12,6,2}*1728g, {2,6,6,4}*1728h, {4,6,6,2}*1728h
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 6, 9)( 7,10)( 8,11)(12,21)(13,22)(14,23)(15,27)(16,28)(17,29)(18,24)
(19,25)(20,26);;
s2 := ( 3,15)( 4,17)( 5,16)( 6,12)( 7,14)( 8,13)( 9,18)(10,20)(11,19)(21,24)
(22,26)(23,25)(28,29);;
s3 := ( 3, 4)( 6, 7)( 9,10)(12,22)(13,21)(14,23)(15,25)(16,24)(17,26)(18,28)
(19,27)(20,29);;
s4 := (30,31);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(31)!(1,2);
s1 := Sym(31)!( 6, 9)( 7,10)( 8,11)(12,21)(13,22)(14,23)(15,27)(16,28)(17,29)
(18,24)(19,25)(20,26);
s2 := Sym(31)!( 3,15)( 4,17)( 5,16)( 6,12)( 7,14)( 8,13)( 9,18)(10,20)(11,19)
(21,24)(22,26)(23,25)(28,29);
s3 := Sym(31)!( 3, 4)( 6, 7)( 9,10)(12,22)(13,21)(14,23)(15,25)(16,24)(17,26)
(18,28)(19,27)(20,29);
s4 := Sym(31)!(30,31);
poly := sub<Sym(31)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2 >; 
 

to this polytope