Polytope of Type {2,440}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,440}*1760
if this polytope has a name.
Group : SmallGroup(1760,1011)
Rank : 3
Schlafli Type : {2,440}
Number of vertices, edges, etc : 2, 440, 440
Order of s0s1s2 : 440
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,220}*880
   4-fold quotients : {2,110}*440
   5-fold quotients : {2,88}*352
   8-fold quotients : {2,55}*220
   10-fold quotients : {2,44}*176
   11-fold quotients : {2,40}*160
   20-fold quotients : {2,22}*88
   22-fold quotients : {2,20}*80
   40-fold quotients : {2,11}*44
   44-fold quotients : {2,10}*40
   55-fold quotients : {2,8}*32
   88-fold quotients : {2,5}*20
   110-fold quotients : {2,4}*16
   220-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 13)(  5, 12)(  6, 11)(  7, 10)(  8,  9)( 14, 47)( 15, 57)( 16, 56)
( 17, 55)( 18, 54)( 19, 53)( 20, 52)( 21, 51)( 22, 50)( 23, 49)( 24, 48)
( 25, 36)( 26, 46)( 27, 45)( 28, 44)( 29, 43)( 30, 42)( 31, 41)( 32, 40)
( 33, 39)( 34, 38)( 35, 37)( 59, 68)( 60, 67)( 61, 66)( 62, 65)( 63, 64)
( 69,102)( 70,112)( 71,111)( 72,110)( 73,109)( 74,108)( 75,107)( 76,106)
( 77,105)( 78,104)( 79,103)( 80, 91)( 81,101)( 82,100)( 83, 99)( 84, 98)
( 85, 97)( 86, 96)( 87, 95)( 88, 94)( 89, 93)( 90, 92)(113,168)(114,178)
(115,177)(116,176)(117,175)(118,174)(119,173)(120,172)(121,171)(122,170)
(123,169)(124,212)(125,222)(126,221)(127,220)(128,219)(129,218)(130,217)
(131,216)(132,215)(133,214)(134,213)(135,201)(136,211)(137,210)(138,209)
(139,208)(140,207)(141,206)(142,205)(143,204)(144,203)(145,202)(146,190)
(147,200)(148,199)(149,198)(150,197)(151,196)(152,195)(153,194)(154,193)
(155,192)(156,191)(157,179)(158,189)(159,188)(160,187)(161,186)(162,185)
(163,184)(164,183)(165,182)(166,181)(167,180)(223,333)(224,343)(225,342)
(226,341)(227,340)(228,339)(229,338)(230,337)(231,336)(232,335)(233,334)
(234,377)(235,387)(236,386)(237,385)(238,384)(239,383)(240,382)(241,381)
(242,380)(243,379)(244,378)(245,366)(246,376)(247,375)(248,374)(249,373)
(250,372)(251,371)(252,370)(253,369)(254,368)(255,367)(256,355)(257,365)
(258,364)(259,363)(260,362)(261,361)(262,360)(263,359)(264,358)(265,357)
(266,356)(267,344)(268,354)(269,353)(270,352)(271,351)(272,350)(273,349)
(274,348)(275,347)(276,346)(277,345)(278,388)(279,398)(280,397)(281,396)
(282,395)(283,394)(284,393)(285,392)(286,391)(287,390)(288,389)(289,432)
(290,442)(291,441)(292,440)(293,439)(294,438)(295,437)(296,436)(297,435)
(298,434)(299,433)(300,421)(301,431)(302,430)(303,429)(304,428)(305,427)
(306,426)(307,425)(308,424)(309,423)(310,422)(311,410)(312,420)(313,419)
(314,418)(315,417)(316,416)(317,415)(318,414)(319,413)(320,412)(321,411)
(322,399)(323,409)(324,408)(325,407)(326,406)(327,405)(328,404)(329,403)
(330,402)(331,401)(332,400);;
s2 := (  3,235)(  4,234)(  5,244)(  6,243)(  7,242)(  8,241)(  9,240)( 10,239)
( 11,238)( 12,237)( 13,236)( 14,224)( 15,223)( 16,233)( 17,232)( 18,231)
( 19,230)( 20,229)( 21,228)( 22,227)( 23,226)( 24,225)( 25,268)( 26,267)
( 27,277)( 28,276)( 29,275)( 30,274)( 31,273)( 32,272)( 33,271)( 34,270)
( 35,269)( 36,257)( 37,256)( 38,266)( 39,265)( 40,264)( 41,263)( 42,262)
( 43,261)( 44,260)( 45,259)( 46,258)( 47,246)( 48,245)( 49,255)( 50,254)
( 51,253)( 52,252)( 53,251)( 54,250)( 55,249)( 56,248)( 57,247)( 58,290)
( 59,289)( 60,299)( 61,298)( 62,297)( 63,296)( 64,295)( 65,294)( 66,293)
( 67,292)( 68,291)( 69,279)( 70,278)( 71,288)( 72,287)( 73,286)( 74,285)
( 75,284)( 76,283)( 77,282)( 78,281)( 79,280)( 80,323)( 81,322)( 82,332)
( 83,331)( 84,330)( 85,329)( 86,328)( 87,327)( 88,326)( 89,325)( 90,324)
( 91,312)( 92,311)( 93,321)( 94,320)( 95,319)( 96,318)( 97,317)( 98,316)
( 99,315)(100,314)(101,313)(102,301)(103,300)(104,310)(105,309)(106,308)
(107,307)(108,306)(109,305)(110,304)(111,303)(112,302)(113,400)(114,399)
(115,409)(116,408)(117,407)(118,406)(119,405)(120,404)(121,403)(122,402)
(123,401)(124,389)(125,388)(126,398)(127,397)(128,396)(129,395)(130,394)
(131,393)(132,392)(133,391)(134,390)(135,433)(136,432)(137,442)(138,441)
(139,440)(140,439)(141,438)(142,437)(143,436)(144,435)(145,434)(146,422)
(147,421)(148,431)(149,430)(150,429)(151,428)(152,427)(153,426)(154,425)
(155,424)(156,423)(157,411)(158,410)(159,420)(160,419)(161,418)(162,417)
(163,416)(164,415)(165,414)(166,413)(167,412)(168,345)(169,344)(170,354)
(171,353)(172,352)(173,351)(174,350)(175,349)(176,348)(177,347)(178,346)
(179,334)(180,333)(181,343)(182,342)(183,341)(184,340)(185,339)(186,338)
(187,337)(188,336)(189,335)(190,378)(191,377)(192,387)(193,386)(194,385)
(195,384)(196,383)(197,382)(198,381)(199,380)(200,379)(201,367)(202,366)
(203,376)(204,375)(205,374)(206,373)(207,372)(208,371)(209,370)(210,369)
(211,368)(212,356)(213,355)(214,365)(215,364)(216,363)(217,362)(218,361)
(219,360)(220,359)(221,358)(222,357);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(442)!(1,2);
s1 := Sym(442)!(  4, 13)(  5, 12)(  6, 11)(  7, 10)(  8,  9)( 14, 47)( 15, 57)
( 16, 56)( 17, 55)( 18, 54)( 19, 53)( 20, 52)( 21, 51)( 22, 50)( 23, 49)
( 24, 48)( 25, 36)( 26, 46)( 27, 45)( 28, 44)( 29, 43)( 30, 42)( 31, 41)
( 32, 40)( 33, 39)( 34, 38)( 35, 37)( 59, 68)( 60, 67)( 61, 66)( 62, 65)
( 63, 64)( 69,102)( 70,112)( 71,111)( 72,110)( 73,109)( 74,108)( 75,107)
( 76,106)( 77,105)( 78,104)( 79,103)( 80, 91)( 81,101)( 82,100)( 83, 99)
( 84, 98)( 85, 97)( 86, 96)( 87, 95)( 88, 94)( 89, 93)( 90, 92)(113,168)
(114,178)(115,177)(116,176)(117,175)(118,174)(119,173)(120,172)(121,171)
(122,170)(123,169)(124,212)(125,222)(126,221)(127,220)(128,219)(129,218)
(130,217)(131,216)(132,215)(133,214)(134,213)(135,201)(136,211)(137,210)
(138,209)(139,208)(140,207)(141,206)(142,205)(143,204)(144,203)(145,202)
(146,190)(147,200)(148,199)(149,198)(150,197)(151,196)(152,195)(153,194)
(154,193)(155,192)(156,191)(157,179)(158,189)(159,188)(160,187)(161,186)
(162,185)(163,184)(164,183)(165,182)(166,181)(167,180)(223,333)(224,343)
(225,342)(226,341)(227,340)(228,339)(229,338)(230,337)(231,336)(232,335)
(233,334)(234,377)(235,387)(236,386)(237,385)(238,384)(239,383)(240,382)
(241,381)(242,380)(243,379)(244,378)(245,366)(246,376)(247,375)(248,374)
(249,373)(250,372)(251,371)(252,370)(253,369)(254,368)(255,367)(256,355)
(257,365)(258,364)(259,363)(260,362)(261,361)(262,360)(263,359)(264,358)
(265,357)(266,356)(267,344)(268,354)(269,353)(270,352)(271,351)(272,350)
(273,349)(274,348)(275,347)(276,346)(277,345)(278,388)(279,398)(280,397)
(281,396)(282,395)(283,394)(284,393)(285,392)(286,391)(287,390)(288,389)
(289,432)(290,442)(291,441)(292,440)(293,439)(294,438)(295,437)(296,436)
(297,435)(298,434)(299,433)(300,421)(301,431)(302,430)(303,429)(304,428)
(305,427)(306,426)(307,425)(308,424)(309,423)(310,422)(311,410)(312,420)
(313,419)(314,418)(315,417)(316,416)(317,415)(318,414)(319,413)(320,412)
(321,411)(322,399)(323,409)(324,408)(325,407)(326,406)(327,405)(328,404)
(329,403)(330,402)(331,401)(332,400);
s2 := Sym(442)!(  3,235)(  4,234)(  5,244)(  6,243)(  7,242)(  8,241)(  9,240)
( 10,239)( 11,238)( 12,237)( 13,236)( 14,224)( 15,223)( 16,233)( 17,232)
( 18,231)( 19,230)( 20,229)( 21,228)( 22,227)( 23,226)( 24,225)( 25,268)
( 26,267)( 27,277)( 28,276)( 29,275)( 30,274)( 31,273)( 32,272)( 33,271)
( 34,270)( 35,269)( 36,257)( 37,256)( 38,266)( 39,265)( 40,264)( 41,263)
( 42,262)( 43,261)( 44,260)( 45,259)( 46,258)( 47,246)( 48,245)( 49,255)
( 50,254)( 51,253)( 52,252)( 53,251)( 54,250)( 55,249)( 56,248)( 57,247)
( 58,290)( 59,289)( 60,299)( 61,298)( 62,297)( 63,296)( 64,295)( 65,294)
( 66,293)( 67,292)( 68,291)( 69,279)( 70,278)( 71,288)( 72,287)( 73,286)
( 74,285)( 75,284)( 76,283)( 77,282)( 78,281)( 79,280)( 80,323)( 81,322)
( 82,332)( 83,331)( 84,330)( 85,329)( 86,328)( 87,327)( 88,326)( 89,325)
( 90,324)( 91,312)( 92,311)( 93,321)( 94,320)( 95,319)( 96,318)( 97,317)
( 98,316)( 99,315)(100,314)(101,313)(102,301)(103,300)(104,310)(105,309)
(106,308)(107,307)(108,306)(109,305)(110,304)(111,303)(112,302)(113,400)
(114,399)(115,409)(116,408)(117,407)(118,406)(119,405)(120,404)(121,403)
(122,402)(123,401)(124,389)(125,388)(126,398)(127,397)(128,396)(129,395)
(130,394)(131,393)(132,392)(133,391)(134,390)(135,433)(136,432)(137,442)
(138,441)(139,440)(140,439)(141,438)(142,437)(143,436)(144,435)(145,434)
(146,422)(147,421)(148,431)(149,430)(150,429)(151,428)(152,427)(153,426)
(154,425)(155,424)(156,423)(157,411)(158,410)(159,420)(160,419)(161,418)
(162,417)(163,416)(164,415)(165,414)(166,413)(167,412)(168,345)(169,344)
(170,354)(171,353)(172,352)(173,351)(174,350)(175,349)(176,348)(177,347)
(178,346)(179,334)(180,333)(181,343)(182,342)(183,341)(184,340)(185,339)
(186,338)(187,337)(188,336)(189,335)(190,378)(191,377)(192,387)(193,386)
(194,385)(195,384)(196,383)(197,382)(198,381)(199,380)(200,379)(201,367)
(202,366)(203,376)(204,375)(205,374)(206,373)(207,372)(208,371)(209,370)
(210,369)(211,368)(212,356)(213,355)(214,365)(215,364)(216,363)(217,362)
(218,361)(219,360)(220,359)(221,358)(222,357);
poly := sub<Sym(442)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope