include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {55,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {55,4}*1760
if this polytope has a name.
Group : SmallGroup(1760,1271)
Rank : 3
Schlafli Type : {55,4}
Number of vertices, edges, etc : 220, 440, 16
Order of s0s1s2 : 55
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
11-fold quotients : {5,4}*160
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 9, 16)( 10, 15)( 11, 13)( 12, 14)( 17,161)( 18,162)
( 19,164)( 20,163)( 21,166)( 22,165)( 23,167)( 24,168)( 25,176)( 26,175)
( 27,173)( 28,174)( 29,171)( 30,172)( 31,170)( 32,169)( 33,145)( 34,146)
( 35,148)( 36,147)( 37,150)( 38,149)( 39,151)( 40,152)( 41,160)( 42,159)
( 43,157)( 44,158)( 45,155)( 46,156)( 47,154)( 48,153)( 49,129)( 50,130)
( 51,132)( 52,131)( 53,134)( 54,133)( 55,135)( 56,136)( 57,144)( 58,143)
( 59,141)( 60,142)( 61,139)( 62,140)( 63,138)( 64,137)( 65,113)( 66,114)
( 67,116)( 68,115)( 69,118)( 70,117)( 71,119)( 72,120)( 73,128)( 74,127)
( 75,125)( 76,126)( 77,123)( 78,124)( 79,122)( 80,121)( 81, 97)( 82, 98)
( 83,100)( 84, 99)( 85,102)( 86,101)( 87,103)( 88,104)( 89,112)( 90,111)
( 91,109)( 92,110)( 93,107)( 94,108)( 95,106)( 96,105);;
s1 := ( 1, 17)( 2, 26)( 3, 27)( 4, 20)( 5, 32)( 6, 23)( 7, 22)( 8, 29)
( 9, 25)( 10, 18)( 11, 19)( 12, 28)( 13, 24)( 14, 31)( 15, 30)( 16, 21)
( 33,161)( 34,170)( 35,171)( 36,164)( 37,176)( 38,167)( 39,166)( 40,173)
( 41,169)( 42,162)( 43,163)( 44,172)( 45,168)( 46,175)( 47,174)( 48,165)
( 49,145)( 50,154)( 51,155)( 52,148)( 53,160)( 54,151)( 55,150)( 56,157)
( 57,153)( 58,146)( 59,147)( 60,156)( 61,152)( 62,159)( 63,158)( 64,149)
( 65,129)( 66,138)( 67,139)( 68,132)( 69,144)( 70,135)( 71,134)( 72,141)
( 73,137)( 74,130)( 75,131)( 76,140)( 77,136)( 78,143)( 79,142)( 80,133)
( 81,113)( 82,122)( 83,123)( 84,116)( 85,128)( 86,119)( 87,118)( 88,125)
( 89,121)( 90,114)( 91,115)( 92,124)( 93,120)( 94,127)( 95,126)( 96,117)
( 98,106)( 99,107)(101,112)(102,103)(104,109)(110,111);;
s2 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)
(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)
(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(176)!( 3, 4)( 5, 6)( 9, 16)( 10, 15)( 11, 13)( 12, 14)( 17,161)
( 18,162)( 19,164)( 20,163)( 21,166)( 22,165)( 23,167)( 24,168)( 25,176)
( 26,175)( 27,173)( 28,174)( 29,171)( 30,172)( 31,170)( 32,169)( 33,145)
( 34,146)( 35,148)( 36,147)( 37,150)( 38,149)( 39,151)( 40,152)( 41,160)
( 42,159)( 43,157)( 44,158)( 45,155)( 46,156)( 47,154)( 48,153)( 49,129)
( 50,130)( 51,132)( 52,131)( 53,134)( 54,133)( 55,135)( 56,136)( 57,144)
( 58,143)( 59,141)( 60,142)( 61,139)( 62,140)( 63,138)( 64,137)( 65,113)
( 66,114)( 67,116)( 68,115)( 69,118)( 70,117)( 71,119)( 72,120)( 73,128)
( 74,127)( 75,125)( 76,126)( 77,123)( 78,124)( 79,122)( 80,121)( 81, 97)
( 82, 98)( 83,100)( 84, 99)( 85,102)( 86,101)( 87,103)( 88,104)( 89,112)
( 90,111)( 91,109)( 92,110)( 93,107)( 94,108)( 95,106)( 96,105);
s1 := Sym(176)!( 1, 17)( 2, 26)( 3, 27)( 4, 20)( 5, 32)( 6, 23)( 7, 22)
( 8, 29)( 9, 25)( 10, 18)( 11, 19)( 12, 28)( 13, 24)( 14, 31)( 15, 30)
( 16, 21)( 33,161)( 34,170)( 35,171)( 36,164)( 37,176)( 38,167)( 39,166)
( 40,173)( 41,169)( 42,162)( 43,163)( 44,172)( 45,168)( 46,175)( 47,174)
( 48,165)( 49,145)( 50,154)( 51,155)( 52,148)( 53,160)( 54,151)( 55,150)
( 56,157)( 57,153)( 58,146)( 59,147)( 60,156)( 61,152)( 62,159)( 63,158)
( 64,149)( 65,129)( 66,138)( 67,139)( 68,132)( 69,144)( 70,135)( 71,134)
( 72,141)( 73,137)( 74,130)( 75,131)( 76,140)( 77,136)( 78,143)( 79,142)
( 80,133)( 81,113)( 82,122)( 83,123)( 84,116)( 85,128)( 86,119)( 87,118)
( 88,125)( 89,121)( 90,114)( 91,115)( 92,124)( 93,120)( 94,127)( 95,126)
( 96,117)( 98,106)( 99,107)(101,112)(102,103)(104,109)(110,111);
s2 := Sym(176)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)
(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)
(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)
(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)
(175,176);
poly := sub<Sym(176)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope