Polytope of Type {42,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {42,6}*1764
if this polytope has a name.
Group : SmallGroup(1764,146)
Rank : 3
Schlafli Type : {42,6}
Number of vertices, edges, etc : 147, 441, 21
Order of s0s1s2 : 3
Order of s0s1s2s1 : 14
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {14,6}*588
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  7)(  3,  6)(  4,  5)(  8, 43)(  9, 49)( 10, 48)( 11, 47)( 12, 46)
( 13, 45)( 14, 44)( 15, 36)( 16, 42)( 17, 41)( 18, 40)( 19, 39)( 20, 38)
( 21, 37)( 22, 29)( 23, 35)( 24, 34)( 25, 33)( 26, 32)( 27, 31)( 28, 30)
( 50, 99)( 51,105)( 52,104)( 53,103)( 54,102)( 55,101)( 56,100)( 57,141)
( 58,147)( 59,146)( 60,145)( 61,144)( 62,143)( 63,142)( 64,134)( 65,140)
( 66,139)( 67,138)( 68,137)( 69,136)( 70,135)( 71,127)( 72,133)( 73,132)
( 74,131)( 75,130)( 76,129)( 77,128)( 78,120)( 79,126)( 80,125)( 81,124)
( 82,123)( 83,122)( 84,121)( 85,113)( 86,119)( 87,118)( 88,117)( 89,116)
( 90,115)( 91,114)( 92,106)( 93,112)( 94,111)( 95,110)( 96,109)( 97,108)
( 98,107);;
s1 := (  1, 58)(  2, 51)(  3, 93)(  4, 86)(  5, 79)(  6, 72)(  7, 65)(  8, 57)
(  9, 50)( 10, 92)( 11, 85)( 12, 78)( 13, 71)( 14, 64)( 15, 63)( 16, 56)
( 17, 98)( 18, 91)( 19, 84)( 20, 77)( 21, 70)( 22, 62)( 23, 55)( 24, 97)
( 25, 90)( 26, 83)( 27, 76)( 28, 69)( 29, 61)( 30, 54)( 31, 96)( 32, 89)
( 33, 82)( 34, 75)( 35, 68)( 36, 60)( 37, 53)( 38, 95)( 39, 88)( 40, 81)
( 41, 74)( 42, 67)( 43, 59)( 44, 52)( 45, 94)( 46, 87)( 47, 80)( 48, 73)
( 49, 66)( 99,107)(101,142)(102,135)(103,128)(104,121)(105,114)(108,141)
(109,134)(110,127)(111,120)(112,113)(115,147)(116,140)(117,133)(118,126)
(122,146)(123,139)(124,132)(129,145)(130,138)(136,144);;
s2 := (  2, 15)(  3, 29)(  4, 43)(  5,  8)(  6, 22)(  7, 36)(  9, 19)( 10, 33)
( 11, 47)( 13, 26)( 14, 40)( 17, 30)( 18, 44)( 20, 23)( 21, 37)( 24, 34)
( 25, 48)( 28, 41)( 32, 45)( 35, 38)( 39, 49)( 51, 64)( 52, 78)( 53, 92)
( 54, 57)( 55, 71)( 56, 85)( 58, 68)( 59, 82)( 60, 96)( 62, 75)( 63, 89)
( 66, 79)( 67, 93)( 69, 72)( 70, 86)( 73, 83)( 74, 97)( 77, 90)( 81, 94)
( 84, 87)( 88, 98)(100,113)(101,127)(102,141)(103,106)(104,120)(105,134)
(107,117)(108,131)(109,145)(111,124)(112,138)(115,128)(116,142)(118,121)
(119,135)(122,132)(123,146)(126,139)(130,143)(133,136)(137,147);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(147)!(  2,  7)(  3,  6)(  4,  5)(  8, 43)(  9, 49)( 10, 48)( 11, 47)
( 12, 46)( 13, 45)( 14, 44)( 15, 36)( 16, 42)( 17, 41)( 18, 40)( 19, 39)
( 20, 38)( 21, 37)( 22, 29)( 23, 35)( 24, 34)( 25, 33)( 26, 32)( 27, 31)
( 28, 30)( 50, 99)( 51,105)( 52,104)( 53,103)( 54,102)( 55,101)( 56,100)
( 57,141)( 58,147)( 59,146)( 60,145)( 61,144)( 62,143)( 63,142)( 64,134)
( 65,140)( 66,139)( 67,138)( 68,137)( 69,136)( 70,135)( 71,127)( 72,133)
( 73,132)( 74,131)( 75,130)( 76,129)( 77,128)( 78,120)( 79,126)( 80,125)
( 81,124)( 82,123)( 83,122)( 84,121)( 85,113)( 86,119)( 87,118)( 88,117)
( 89,116)( 90,115)( 91,114)( 92,106)( 93,112)( 94,111)( 95,110)( 96,109)
( 97,108)( 98,107);
s1 := Sym(147)!(  1, 58)(  2, 51)(  3, 93)(  4, 86)(  5, 79)(  6, 72)(  7, 65)
(  8, 57)(  9, 50)( 10, 92)( 11, 85)( 12, 78)( 13, 71)( 14, 64)( 15, 63)
( 16, 56)( 17, 98)( 18, 91)( 19, 84)( 20, 77)( 21, 70)( 22, 62)( 23, 55)
( 24, 97)( 25, 90)( 26, 83)( 27, 76)( 28, 69)( 29, 61)( 30, 54)( 31, 96)
( 32, 89)( 33, 82)( 34, 75)( 35, 68)( 36, 60)( 37, 53)( 38, 95)( 39, 88)
( 40, 81)( 41, 74)( 42, 67)( 43, 59)( 44, 52)( 45, 94)( 46, 87)( 47, 80)
( 48, 73)( 49, 66)( 99,107)(101,142)(102,135)(103,128)(104,121)(105,114)
(108,141)(109,134)(110,127)(111,120)(112,113)(115,147)(116,140)(117,133)
(118,126)(122,146)(123,139)(124,132)(129,145)(130,138)(136,144);
s2 := Sym(147)!(  2, 15)(  3, 29)(  4, 43)(  5,  8)(  6, 22)(  7, 36)(  9, 19)
( 10, 33)( 11, 47)( 13, 26)( 14, 40)( 17, 30)( 18, 44)( 20, 23)( 21, 37)
( 24, 34)( 25, 48)( 28, 41)( 32, 45)( 35, 38)( 39, 49)( 51, 64)( 52, 78)
( 53, 92)( 54, 57)( 55, 71)( 56, 85)( 58, 68)( 59, 82)( 60, 96)( 62, 75)
( 63, 89)( 66, 79)( 67, 93)( 69, 72)( 70, 86)( 73, 83)( 74, 97)( 77, 90)
( 81, 94)( 84, 87)( 88, 98)(100,113)(101,127)(102,141)(103,106)(104,120)
(105,134)(107,117)(108,131)(109,145)(111,124)(112,138)(115,128)(116,142)
(118,121)(119,135)(122,132)(123,146)(126,139)(130,143)(133,136)(137,147);
poly := sub<Sym(147)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope