Polytope of Type {6,42}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,42}*1764
if this polytope has a name.
Group : SmallGroup(1764,146)
Rank : 3
Schlafli Type : {6,42}
Number of vertices, edges, etc : 21, 441, 147
Order of s0s1s2 : 3
Order of s0s1s2s1 : 14
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,14}*588
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  8)(  3, 15)(  4, 22)(  5, 29)(  6, 36)(  7, 43)( 10, 16)( 11, 23)
( 12, 30)( 13, 37)( 14, 44)( 18, 24)( 19, 31)( 20, 38)( 21, 45)( 26, 32)
( 27, 39)( 28, 46)( 34, 40)( 35, 47)( 42, 48)( 51, 57)( 52, 64)( 53, 71)
( 54, 78)( 55, 85)( 56, 92)( 59, 65)( 60, 72)( 61, 79)( 62, 86)( 63, 93)
( 67, 73)( 68, 80)( 69, 87)( 70, 94)( 75, 81)( 76, 88)( 77, 95)( 83, 89)
( 84, 96)( 91, 97)(100,106)(101,113)(102,120)(103,127)(104,134)(105,141)
(108,114)(109,121)(110,128)(111,135)(112,142)(116,122)(117,129)(118,136)
(119,143)(124,130)(125,137)(126,144)(132,138)(133,145)(140,146);;
s1 := (  2, 36)(  3, 22)(  4,  8)(  5, 43)(  6, 29)(  7, 15)(  9, 39)( 10, 25)
( 12, 46)( 13, 32)( 14, 18)( 16, 42)( 17, 28)( 19, 49)( 20, 35)( 23, 38)
( 26, 45)( 27, 31)( 30, 41)( 33, 48)( 40, 44)( 50, 99)( 51,134)( 52,120)
( 53,106)( 54,141)( 55,127)( 56,113)( 57,102)( 58,137)( 59,123)( 60,109)
( 61,144)( 62,130)( 63,116)( 64,105)( 65,140)( 66,126)( 67,112)( 68,147)
( 69,133)( 70,119)( 71,101)( 72,136)( 73,122)( 74,108)( 75,143)( 76,129)
( 77,115)( 78,104)( 79,139)( 80,125)( 81,111)( 82,146)( 83,132)( 84,118)
( 85,100)( 86,135)( 87,121)( 88,107)( 89,142)( 90,128)( 91,114)( 92,103)
( 93,138)( 94,124)( 95,110)( 96,145)( 97,131)( 98,117);;
s2 := (  1, 58)(  2, 57)(  3, 63)(  4, 62)(  5, 61)(  6, 60)(  7, 59)(  8, 51)
(  9, 50)( 10, 56)( 11, 55)( 12, 54)( 13, 53)( 14, 52)( 15, 93)( 16, 92)
( 17, 98)( 18, 97)( 19, 96)( 20, 95)( 21, 94)( 22, 86)( 23, 85)( 24, 91)
( 25, 90)( 26, 89)( 27, 88)( 28, 87)( 29, 79)( 30, 78)( 31, 84)( 32, 83)
( 33, 82)( 34, 81)( 35, 80)( 36, 72)( 37, 71)( 38, 77)( 39, 76)( 40, 75)
( 41, 74)( 42, 73)( 43, 65)( 44, 64)( 45, 70)( 46, 69)( 47, 68)( 48, 67)
( 49, 66)( 99,107)(100,106)(101,112)(102,111)(103,110)(104,109)(105,108)
(113,142)(114,141)(115,147)(116,146)(117,145)(118,144)(119,143)(120,135)
(121,134)(122,140)(123,139)(124,138)(125,137)(126,136)(127,128)(129,133)
(130,132);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(147)!(  2,  8)(  3, 15)(  4, 22)(  5, 29)(  6, 36)(  7, 43)( 10, 16)
( 11, 23)( 12, 30)( 13, 37)( 14, 44)( 18, 24)( 19, 31)( 20, 38)( 21, 45)
( 26, 32)( 27, 39)( 28, 46)( 34, 40)( 35, 47)( 42, 48)( 51, 57)( 52, 64)
( 53, 71)( 54, 78)( 55, 85)( 56, 92)( 59, 65)( 60, 72)( 61, 79)( 62, 86)
( 63, 93)( 67, 73)( 68, 80)( 69, 87)( 70, 94)( 75, 81)( 76, 88)( 77, 95)
( 83, 89)( 84, 96)( 91, 97)(100,106)(101,113)(102,120)(103,127)(104,134)
(105,141)(108,114)(109,121)(110,128)(111,135)(112,142)(116,122)(117,129)
(118,136)(119,143)(124,130)(125,137)(126,144)(132,138)(133,145)(140,146);
s1 := Sym(147)!(  2, 36)(  3, 22)(  4,  8)(  5, 43)(  6, 29)(  7, 15)(  9, 39)
( 10, 25)( 12, 46)( 13, 32)( 14, 18)( 16, 42)( 17, 28)( 19, 49)( 20, 35)
( 23, 38)( 26, 45)( 27, 31)( 30, 41)( 33, 48)( 40, 44)( 50, 99)( 51,134)
( 52,120)( 53,106)( 54,141)( 55,127)( 56,113)( 57,102)( 58,137)( 59,123)
( 60,109)( 61,144)( 62,130)( 63,116)( 64,105)( 65,140)( 66,126)( 67,112)
( 68,147)( 69,133)( 70,119)( 71,101)( 72,136)( 73,122)( 74,108)( 75,143)
( 76,129)( 77,115)( 78,104)( 79,139)( 80,125)( 81,111)( 82,146)( 83,132)
( 84,118)( 85,100)( 86,135)( 87,121)( 88,107)( 89,142)( 90,128)( 91,114)
( 92,103)( 93,138)( 94,124)( 95,110)( 96,145)( 97,131)( 98,117);
s2 := Sym(147)!(  1, 58)(  2, 57)(  3, 63)(  4, 62)(  5, 61)(  6, 60)(  7, 59)
(  8, 51)(  9, 50)( 10, 56)( 11, 55)( 12, 54)( 13, 53)( 14, 52)( 15, 93)
( 16, 92)( 17, 98)( 18, 97)( 19, 96)( 20, 95)( 21, 94)( 22, 86)( 23, 85)
( 24, 91)( 25, 90)( 26, 89)( 27, 88)( 28, 87)( 29, 79)( 30, 78)( 31, 84)
( 32, 83)( 33, 82)( 34, 81)( 35, 80)( 36, 72)( 37, 71)( 38, 77)( 39, 76)
( 40, 75)( 41, 74)( 42, 73)( 43, 65)( 44, 64)( 45, 70)( 46, 69)( 47, 68)
( 48, 67)( 49, 66)( 99,107)(100,106)(101,112)(102,111)(103,110)(104,109)
(105,108)(113,142)(114,141)(115,147)(116,146)(117,145)(118,144)(119,143)
(120,135)(121,134)(122,140)(123,139)(124,138)(125,137)(126,136)(127,128)
(129,133)(130,132);
poly := sub<Sym(147)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >; 
 
References : None.
to this polytope