include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {14,2,8,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,2,8,4}*1792b
if this polytope has a name.
Group : SmallGroup(1792,1036167)
Rank : 5
Schlafli Type : {14,2,8,4}
Number of vertices, edges, etc : 14, 14, 8, 16, 4
Order of s0s1s2s3s4 : 56
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {7,2,8,4}*896b, {14,2,4,4}*896
4-fold quotients : {7,2,4,4}*448, {14,2,2,4}*448, {14,2,4,2}*448
7-fold quotients : {2,2,8,4}*256b
8-fold quotients : {7,2,2,4}*224, {7,2,4,2}*224, {14,2,2,2}*224
14-fold quotients : {2,2,4,4}*128
16-fold quotients : {7,2,2,2}*112
28-fold quotients : {2,2,2,4}*64, {2,2,4,2}*64
56-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);;
s2 := (16,17)(18,20)(19,22)(21,24)(25,28)(27,29);;
s3 := (15,16)(17,19)(18,21)(20,23)(22,25)(24,27)(26,29)(28,30);;
s4 := (16,18)(17,20)(19,22)(23,26)(25,29)(27,28);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4*s3*s4, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(30)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s1 := Sym(30)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);
s2 := Sym(30)!(16,17)(18,20)(19,22)(21,24)(25,28)(27,29);
s3 := Sym(30)!(15,16)(17,19)(18,21)(20,23)(22,25)(24,27)(26,29)(28,30);
s4 := Sym(30)!(16,18)(17,20)(19,22)(23,26)(25,29)(27,28);
poly := sub<Sym(30)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope